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Sommario

Questa tesi analizza il ruolo della teoria di campo medio e delle
fluttuazioni in due differenti sistemi fermionici: il crossover BCS-
BEC e i cuprati superconduttori ad alta temperatura critica.

Nella prima parte della tesi si introduce la teoria di campo
medio e le fluttuazioni a livello Gaussiano per il crossover BCS-
BEC, i.e. l’evoluzione continua osservata in sistemi ultrafreddi
di fermioni neutri, da un regime di accoppiamento debole dove
i fermioni formano coppie di Cooper, ad un regime di accoppia-
mento forte dove i fermioni formano dapprima dimeri molecolari
bosonici, i quali poi condensano a temperature sufficientemente
basse. Si analizzano alcuni problemi correlati al crossover: la fra-
zione condensata nel caso di un gas di Fermi con sbilanciamento
di spin, il decadimento di Beliaev per le eccitazioni collettive e il
caso di un gas di Fermi bidimensionale, per il quale in particolare
si calcolano la velocità del primo suono e le temperatura critica
di Berezinskii-Kosterlitz-Thouless, in accordo molto buono con
recenti dati sperimentali. Infine si analizza una procedura di
regolarizzazione per l’equazione di stato nel limite deep-BEC che
permette di derivare analiticamente il corretto rapporto tra la
lunghezza di scattering fermionica e bosonica.

Nella seconda parte della tesi si introduce un approccio di
gauge alla superconduttività nei cuprati nel quale la buca è de-
composta nel prodotto di una particella che porta solo spin, lo
spinone, e una particella che porta solo carica, l’holone. La sta-
tistica di ciascuna particella è modificata accoppiandola ad un
campo di gauge che fornisce un flusso statistico, in un approccio
analogo alla bosonizzazione di Chern-Simons. Si ottiene quindi
un modello che prevede tre temperature caratteristiche che cor-
rispondono, rispettivamente, alla comparsa di una densità finita
di coppie di holoni incoerenti, di una densità finita di coppie di
spinoni incoerenti e infine alla coerenza di fase che dà luogo alla
superconduttività.

In particolare in questa tesi all’interno di tale modello si studia
la densità di superfluido, dimostrando che il contributo spinonico
e quello holonico si sommano secondo una regola del tutto analoga
a quella di Ioffe-Larkin per la resistività, mostrando un ottimo
accordo con i dati sperimentali nella regione di doping moderato
fino all’optimal doping. Si dimostra anche il formalismo riproduce
la quasi-universalità in doping osservata nei dati sperimentali e
permette la derivazione analitica di una relazione che approssima
la relazione di Uemura per doping moderati.



Abstract

This Thesis analyzes the role of a mean-field theory and of the
fluctuations in two different fermionic systems: the BCS-BEC
crossover and high-Tc superconducting cuprates.

In the first part of the Thesis we introduce the mean-field
theory and the Gaussian-level fluctuations for the BCS-BEC
crossover, i.e. the continuous evolution observed in ultracold
neutral fermionic systems, from a weakly-coupled regime where
fermions form Cooper pairs, to a strongly-coupled regime where
the fermions at first form bosonic molecular dimers, subsequently
undergoing Bose-Einstein condensation for low enough tempera-
tures. We then analyze some problems related to the crossover:
the condensate fraction for a spin-unbalanced Fermi gas, the
Beliaev decay for collective excitations and the case of a two-
dimensional Fermi gas, for which we calculate the first sound
velocity and the Berezinskii-Kosterlitz-Thouless critical temper-
ature, in very good agreement with recent experimental data.
Finally we analyze a regularization procedure for the equation of
state in the deep-BEC limit, allowing one to analytically derive
the correct ratio between the fermionic and bosonic scattering
lengths.

In the second part of the Thesis we introduce a gauge approach
to superconductivity in cuprates in which the hole is decomposed
as the product of a spinful neutral particle, the spinon, and
a spinless charged particle, the holon. The statistics of each
particle is modified by binding it to a gauge field providing a
statistical flux, this approach being analogous to Chern-Simons
bosonization. We thus obtain a model characterized by three
characteristic temperatures corresponding, respectively, to the
appearance of a finite density of incoherent holon pairs, of a
finite density of incoherent spinon pairs and, finally, to the phase
coherence leading to superconductivity.

Specifically in the present Thesis within this model we study
the superfluid density, demonstrating that the spinon and holon
contributions sum according to a Ioffe-Larking-like rule, analogous
to that they found for resistivity, showing excellent agreement
with experimental data in the moderate underdoping up to op-
timal doping region. We also demonstrated that the formalism
reproduces the quasi-universality observed in experimental data
at different dopings and allows for an analytical derivation of
a relation that approximates the Uemura relation for moderate
dopings.
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1
Introduction

Under the calm mask of matter

The divine fire burns

Vladimir Solovyev

This Thesis analyzes the role of a mean field treatment and of fluctuations
in two different fermionic systems: the BCS-BEC crossover and high-Tc

superconducting cuprates.
In Chapter 2 the Bardeen-Cooper-Schrieffer (BCS) theory of supercon-

ductivity and the Bose-Einstein condensation (BEC) are briefly reviewed.
This serves as an introduction to the BCS-BEC crossover, i.e. the continuous
evolution in a neutral fermionic system, as the fermion-fermion attractive
interaction is tuned, from a weakly-coupled regime to a strongly coupled one.
In the weakly-coupled BCS regime fermions form broad Cooper pairs, while
in the strongly-coupled BEC regime they form tightly-bound molecules, i.e.
composite bosons. The Cooper pairs in the BCS regime are, by definition,
formed at zero-momentum and immediately condense defining the critical
temperature Tc; the composite bosons in the BEC regime, on the other hand,
are formed at a temperature T ⇤ and eventually, as the temperature is lowered,
undergo Bose-Einstein condensation at a different temperature Tc < T ⇤.
The ultimate mechanism for condensation throughout the whole crossover is
Bose-Einstein condensation, happening, however, in two profoundly different
conditions, making the study of the crossover from one limit to the other a
very interesting research topic.

The BCS-BEC crossover is at first considered from a historical perspective,
starting from pioneering works in the 1960s up to recent analyses motivated
by the realization of the crossover in ultracold Fermi gases. Subsequently I

1
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2 Introduction

analyze the experimental techniques allowing for such a realization: I briefly
introduce optical and magnetic trapping for an ultracold gas, along with the
concept of Feshbach resonance, which critically provides the possibility of
tuning with continuity the attractive fermion-fermion interaction connecting
the weakly-coupled and strongly-coupled regimes.

In Chapter 3 the mean-field formalism for the BCS-BEC crossover is
introduced, deriving the gap and number equations which, jointly solved,
completely determine the thermodynamics of the system at each point of
the crossover. The equations are derived within a Hamiltonian approach
and within a path integral approach. Afterwards we develop a mean-field
description for a spin-unbalanced Fermi gas, focusing in particular on the
condensate fraction in the uniform and trapped cases, comparing the latter
with experimental data. This analysis is based on results published in Ref.
[1].

In Chapter 4 the theory of order parameter fluctuations for the BCS-BEC
crossover is introduced. While the mean-field theory can usually provide good
results at zero temperature in the three-dimensional case, corrections beyond
the mean-field picture are needed when investigating finite-temperature effects
or when modeling lower-dimensionality systems. Moreover a mean-field theory
only includes single-particle excitations, completely neglecting e.g. the sound
mode. After a general derivation of the Gaussian fluctuation contribution to
the thermodynamics of the system, three problems are analyzed:

• The Beliaev decay, i.e. the decay of a collective excitation in two
lower frequency excitations in a superfluid. The original approximate
treatment due to Landau decay is extended allowing for a non-collinear
decay and is applied to the collective excitations of an ultracold Fermi
gas, being the only allowed decay mode in the zero-temperature, low-
energy limit. We show that, in this case, there can be substantial
corrections with respect to the approximate theory. This analysis is
based on results published in Ref. [2].

• The Berezinskii-Kosterlitz-Thouless transition in a two-dimensional
Fermi gas: the role of fluctuations is enhanced in two dimensions, in
fact fluctuations destroy the off-diagonal long-range order at any finite
temperature and it has been demonstrated that the equation of state,
even at T=0, requires the inclusion of fluctuations in order to correctly
recover the composite boson limit in the deep-BEC regime. In this
Thesis, based on the results published in Ref. [3], we investigate the
Berezinskii-Kosterlitz-Thouless critical temperature, the first sound
velocity and the second sound velocity. A comparison with experimen-
tal data for the critical temperature and the first sound shows very
good agreement, confirming the enhanced role of fluctuations in lower
dimensionality and their fundamental relevance, particularly in the
intermediate and BEC regimes.
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• At last I derive a regularized equation of state in the deep-BEC limit,
providing an analytical derivation of the relation

ab =
2

3
as

between the scattering length of fermions as and that of the composite
bosons ab in the deep BEC limit. This result, based on Ref. [4], is in
good agreement with other theoretical and Monte Carlo investigations
and shows that the role of fluctuation is important in recovering a
quantitatively correct composite boson limit even in three dimensions,
the mean-field result being ab = 2as.

As anticipated the subject of Chapter 5 is high-Tc superconducting
cuprates. Materials in this class, the first of which was discovered in 1986,
exhibit superconductivity up to very high temperatures, even exceeding 130K
in the case of HgBa2Ca2Cu3O8. Cuprates are still far from being completely
understood from a theoretical point of view and there is no agreement on
the microscopical pairing and superconductivity mechanisms, despite a great
deal of experimental and theoretical efforts.

All cuprates are characterized by the presence of stacked CuO2 planes,
hence the name from Latin cuprum, copper, while the additional structures
appearing between the planes change from material to material. The intro-
duction of additional holes, or electrons in some materials, in the planes upon
doping yields superconductivity. The critical temperature is maximum when
the average concentration of additional holes is about 0.16 per lattice site.

It is commonly accepted that the physics of cuprates is essentially two-
dimensional and that the main seat of superconductivity is to be found in
the CuO2 planes, the other structures and inter-layer couplings providing
only higher order effects. Moreover many share the point of view that the
t � J model (large U limit of the Hubbard model) should be able to describe
the relevant low-energy dynamics of cuprates.

In Chapter 5 I introduce and review a proposed solution consisting in a
spin-charge gauge approach to high-Tc superconductivity and to the t � J
model, see Ref. [5] and references therein. This approach relies on a composite
structure of the hole, which is decomposed as the product of a fermonic holon
and a bosonic spinon. The particles are then bound to a gauge field providing
a statistical flux, in a process analogous to Chern-Simons bosonization [6],
allowing one to control the statistics for the holon and the spinon, subjected
to the constraint that the hole must remain fermionic. However in two
dimensions particles can have anyonic statistics, i.e. a particle exchange can
introduce a phase shift in the many-body wavefunction, rather than just a
±1 factor, resulting in a much wider range of choices.

The resulting scheme is very flexible, and can reproduce the slave-boson
and the slave-fermion approaches as particular cases. Motivated by exact
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results obtained in one-dimensional systems, in the present work spinons and
holons, dressed by their statistical flux, are semions, i.e. particles acquiring a
±i factor upon exchange.

Within an an opportune approximated treatment superconductivity is
achieved in three steps: at first a finite density of incoherent holon pairs is
formed, and the correspondent crossover temperature is denoted by Tph; at
a lower crossover temperature a finite density of incoherent spinons pairs
is formed, defining Tps. Still the phase fluctuations destroy the coherence
all the way down to a third, lower, critical temperature Tc, finally marking
hole coherence and the full superconducting transition. With respect to the
BCS-BEC crossover the composite nature of the hole leads to a composite
approach to criticality, defining three different characteristic temperatures,
the first two characterizing crossovers and the third a true phase transition.
The pairing glue is provided by an emergent gauge field, as a result of an
additional U(1) symmetry introduced by the spin-charge separation.

Within this framework I demonstrate the following properties, based on
Ref. [7]:

• Holons and spinons give rise to two different contributions to the
superfluid density ⇢s, respectively ⇢s,h and ⇢s,s. They sum according
to a Ioffe-Larkin-like composition rule:

⇢s =
⇢s,s⇢s,h

⇢s,s + ⇢s,h
.

• The superconducting transition is essentially of the 3D XY type; in
particular the critical exponent for superfluid density is 2/3, in accor-
dance with experimental data, but the three-dimensionality is not as
a result of inter-layer coupling but of the intrinsic 2 + 1-dimensional
nature of the spinons. The whole temperature profile of superfluid
density as derived within our formalism shows excellent agreement with
experimental data in a broad doping range for moderate underdopings
to the optimal doping region.

• The Uemura relation is essentially the empirical observation that, for
underdoped cuprates, the zero-temperature superfluid density is propor-
tional to the critical temperature. I provided an analytical derivation,
showing that the spin-charge gauge approach is able to approximately
reproduce the Uemura relation.

In particular it is worth noting that the spin-charge gauge approaches
solves a dichotomy characterizing many experimental features of cuprates,
i.e. the experimentally observed interplay between BCS-like and non-mean-
field features. In the case of superfluid density the linear T -dependence of
superfluid density at low temperatures resembles BCS-like dynamics, however
the non-mean-field critical exponent 2/3 observed in experiments is clearly
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not compatible with a BCS description and puts the transition in the 3D
XY universality class. The Uemura relation is also at odds with a BCS-like
description. In our approach holons and spinons contribute to the superfluid
density according the Ioffe-Larkin-like composition rule, the holons being
more relavant at low temperatures, modifying the low-temperature slope of ⇢s,
the spinons being more relevant close to the critical temperature, determining
the universality class of the transition. The experimental behavior is thus
accurately reproduced.

Finally the superfluid density is used as a phenomenological tool to inves-
tigate the cuprate phase diagram. We identify, in opportunely normalized
superfluid density data, three different universality classes which, we conjec-
ture, can be interpreted and explained as three different coherence states
of the spinon+holon system. An extension of the theoretical treatment for
superfluid density away from the moderate to optimal doping region is the
subject of currently ongoing work.





2
The BCS-BEC crossover

The main aim of this Chapter is the introduction of the BCS-BEC crossover,
i.e. the continuous evolution observed in a fermionic system, when tuning the
attractive fermion-fermion interaction, from a regime of weakly interacting
Cooper pairs to a regime of strongly interacting tightly bound dimers. I
shall cover the historical evolution that led to the development of the theory,
starting from pioneering works in 1970s arriving at the current state-of-the-
art theories motivated by the experimental realization of the crossover in
ultracold Fermi atoms experiments, reviewing the most important experi-
mental techniques employed in cooling and manipulating atoms, along with
the major theoretical advances. In covering the history of the ideas of the
BCS-BEC crossover I shall loosely follow the excellent account by some of
the protagonists of this endeavor in Refs. [8–11].

2.1 The origins: superconductivity in Fermi sys-
tems and condensation in Bose systems

Before analyzing the BCS-BEC crossover it is worth introducing its parents,
i.e. the Bardeen-Cooper-Schrieffer (BCS) theory of superconductivity and
the Bose-Einstein condensation (BEC), which are the two main paradigms in
the understanding of superconductivity and superfluidity [12].

The BCS theory, giving a fully microscopical explanation to the phe-
nomenon of pairing leading to “conventional” superconductivity1, as observed

1The term “classical” or “conventional” superconductor refers to a class of superconduc-
tive materials whose behavior exhibit a wide range of shared characteristics: the transition
temperature T

c

is much smaller than the Fermi temperature, the non-superconducting

7



8 The BCS-BEC crossover

e.g. in most elemental superconductors, is one of the greatest theoretical
advances in Physics in the second half of the 20th century. First fully formu-
lated in 1957 by J. Bardeen, L. Cooper and J. R. Schrieffer [14], the BCS
theory explained a phenomenon observed more than half a century earlier, in
1911, by H. Kamerlingh Onnes2.

We start from the Hamiltonian describing a number of atoms, considering
the dynamics of each single electron and the dynamics of the nuclei as a
whole, introducing the Coulomb attraction between electrons and nuclei, and
the Coulomb repulsion between electrons and between nuclei:

Ĥ =
X

i

p̂2
i

2m
+
X

↵

P̂ 2
i

2M↵
+

1

2

X

i 6=j

e2

|r̂i � r̂j |
+

1

2

X

↵ 6=�

Z↵Z�e2

|R̂↵ � R̂� |
�
X

i↵

Z↵e

|r̂i � R̂↵|
(2.1)

where latin indices run over the electrons, greek indices run over the nuclei,
the r̂ and p̂ operators represent the position and momentum of each electron,
while their uppercase counterpart refers to nuclei, m is the electron mass, M↵

is the mass of the ↵-th nucleus and finally Z↵ is the number of protons of the
↵-th nucleus. Virtually every problem in condensed matter3 is encoded in the
Hamiltonian in Eq. (2.1), which however is impossible to solve analytically, in
fact even the most sophisticated numerical analyses can include at most tens
or hundreds of atoms, while the typical number of particles in a condensed
matter system is 1023. The only way to proceed is clearly by approximation;
in particular a simple but effective (to some extent) approximation can be
derived by noting that as m and M↵ are separated by at least three orders of
magnitude, the dynamics of electrons and nuclei can be deemed as decoupled
in first approximation, the so-called Born-Oppenheimer hypothesis [17].

Particularly in the case of metals one may consider a gas of conduction
electrons moving over an average positive background: this is the jellium
model [18]. The consequences of this approximation can be verified ex-
perimentally and the jellium model has been able to explain a number of
experimentally-observed features [18], e.g. plasma frequency, response func-
tions and the screening of the Coulomb interaction which modifies the usual
Coulomb electron-electron potential adding an exponential tail:

VTF =
1

4⇡✏0

e2

|r � r

0|e
� |r�r0|

rTF (2.2)

state above T
c

is a normal electron gas, there are no other kinds of phase transitions,
superconductivity is due to the formation of Cooper pairs, which in turn form by phonon
exchange, see for instance [13]. “Conventional” materials are well described by usually the
BCS theory, so that sometimes BCS and “conventional” are used interchangeably in the
context of superconductivity.

2Kamerlingh Onnes’ most significant original papers are collected in [15], a detailed
historical account of the production of liquid helium which led to the discovery of super-
conductivity can be found in [16].

3Unless relativistic effects are relevant.
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where rTF is the Thomas-Fermi screening length. However the jellium model
is not able to explain the superconductivity as observed for instance in
elemental superconductors; one must somehow extend the approximation
scheme in order to introduce the interaction of electrons with the crystal
lattice. In fact a conduction electron traveling inside a metal can attract, due
to the Coulomb interaction, the ions forming the crystal lattice, causing a
small displacement in the crystal structure and creating a net positive charge.
In turn another conduction electron may be at the same location at a later
time, experiencing an indirect attraction due to the positive charge. This
mechanism can be described as an effective phonon-mediated electron-electron
attraction.

Critically the typical time scale of lattice vibrations is O
�

!�1
D

�

, !D being
the Debye frequency. This time scale is way larger than the typical time scale
associated to the motion of electrons O

�

~✏�1
F

�

, ✏F being the Fermi energy.
As a consequence two electrons can interact through phonon exchange even
when far away from each other, overcoming the Coulomb repulsion.

A very simplified model of this situation can be introduced with the
following “toy” interaction potential

Veff(k,k0) = �|geff|2 if ✏F � ~!D  k2

2m
,
k02

2m
 ✏F + ~!D (2.3)

describing the scattering between electron with momenta k and k

0, subjected
to the conditions the electrons must be in the vicinity of the Fermi surface,
otherwise they would not be available for scattering due to Pauli blocking, and
that the energy transfer cannot be greater than the typical energy of lattice
vibration, i.e. the Debye energy. The potential in Eq. (2.3) sketches only the
basic feature, i.e. attraction, of more realistic treatments of electron-phonon
interaction. The approximation turns out to be simple enough as to allow
an analytical treatment, while being extremely accurate in describing the
physics of superconductivity: in fact the complete BCS theory, building upon
this approximation, predicts with quantitative accuracy many features of
superconductivity in a wide range of materials [19].

The interaction term in the BCS Hamiltonian is then

ĤI = �|geff|2
X

ĉ†
k1+q,�1

ĉ†
k2�q,�2

ĉ
k1,�1 ĉk2�2 (2.4)

with obvious meaning of the momentum-space electron creation and anni-
hilation operators, the sum being over the momenta k1, k2, q and the spin
indices �1, �2 with the additional constraint

✏F � ~!D  ✏  ✏F + ~!D , (2.5)

i.e. the energy ✏ of each electron being confined in a 2~!D thick layer in the
vicinity of the Fermi surface.
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The next fundamental step in understanding the superconductivity phe-
nomenon was done by Cooper [20], introducing the Cooper instability; he
analyzed a simplified model consisting of two electrons interacting over a
filled Fermi sea, demonstrating that an effective attractive electron-electron
interaction, albeit small, can lead to the formation of a two-particle state,
the Cooper pair. Moreover the Cooper pair is slightly energetically favorable,
i.e. has slightly lower energy with respect to the Fermi level. Even if in
most superconductors the attractive force is provided by the electron-phonon
exchange, it is important noting that the Cooper instability mechanism works
regardless of the origin of the attractive potential, in fact in ultracold atoms
experiments Cooper pairs are realized as a result of an effective interaction
tuned through a Feshbach resonance, see Section 2.3.

Cooper pairs are bosons, being composed of two fermions, and can con-
dense at low enough temperature, the mechanism of Bose-Einstein conden-
sation will be analyzed shortly. Electrons forming a Cooper pair are then
radically different from “regular” conduction electrons in a metal, in particular
they form a quantum state whose coherence extends up to a macroscopical
level, this property being responsible for the features of a superconductor, in
particular the peculiar resistance-less electric current flow.

The Bose-Einstein condensation, on the other hand, has a completely
different history, the theoretical prediction of such a state given in 1924
by Bose and Einstein [21, 22] preceding its experimental observation by at
least a decade: the superfluidity in 4He firstly observed in 1938 [23, 24]
can be explained in the framework of Bose-Einstein condensation at least
qualitatively, even though the strong inter-particle interactions quantitatively
modify the dynamics of the condensate. For a more direct observation of
Bose-Einstein condensation one needs to go forward to 1995 when the Bose-
Einstein condensation was observed in dilute vapors of rubidium and sodium
[25, 26]. Recent advancements led to the observation of the Bose-Einstein
condensation in a variety of bosonic systems, e.g. many different atomic
species, molecules [27, 28], excitons [29, 30] and light [31].

It is worth noting [12] that particles that undergo Bose-Einstein conden-
sation need to be bosons, i.e. carrying integer spin, and are most often4

composite particles, introducing two different temperature scales, one associ-
ated with the formation of a composite bosonic object, Tp, where the subscript
stands for “pairing”, and one associated with the actual condensation, Tc,
where the subscript stands for “critical” or “condensation”

Let us consider a system of non-interacting bosons of mass m at tempera-
ture T . The many-particle wave-function will be invariant upon the exchange
of two coordinates

 (r1, r2, · · · , rN ) =  (r2, r1, · · · , rN ) (2.6)

4This was always the case before the BEC of light [31].
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Bose [21] first showed that the average occupation number of a system will
be described by the Bose-Einstein distribution

n
k

=
1

e�(k2/2m�µ) � 1
, (2.7)

where � ⌘ (kBT )�1 and kB is the Boltzmann constant. The total number of
particles for the system will then be

N =
X

k

n
k

⇡ V

(2⇡)3

Z

d3k n
k

(2.8)

the second equality being valid in the limit of an infinitely extended system.
Eq. (2.8) can be seen as a constraint to find µ given a certain N . In turn
Einstein [22] showed that the statistical distribution in Eq. (2.7) implies that
in a system of non-interacting bosons there will be critical temperature Tc

defined by

Tc =
2⇡~2

kBm

✓

n

g3/2(1)

◆

2
3

, (2.9)

under which a macroscopical fraction of bosons will condense in the zero-
momentum state; g3/2(1) = ⇣(3/2) ⇡ 2.612. In the BCS case the Pauli
exclusion principle forces all the low energy physics to happen at the Fermi
level; of course this does not apply to a Bose system: the lowest energy,
zero-momentum state will be occupied by a macroscopically large number of
particles. In fact the condensate fraction, i.e. the ratio between the number
of condensed particles and the total number of particles, is

N0

N
= 1 �

✓

T

Tc

◆3/2

(2.10)

It is worth stressing that the phase transition is purely quantum mechani-
cal, and happens even in absence of particle-particle interactions, as opposed
to most “conventional” phase transitions.

Leggett [13] advocates an alternative characterization of Bose-Einstein
condensation, as originally proposed by Penrose and Onsager [32], by consid-
ering the eigenvalues of the one-particle density matrix

⇢1(r, r
0) = h †(r) †(r0)i (2.11)

where the  †
↵(r) field operator creates a boson in position r and h#i denotes

the expectation value. The infinite-dimensional matrix ⇢1(r, r0) is by definition
Hermitean and can thus be diagonalized having real eigenvalues, as

⇢1(r, r
0) =

X

i

ni�
⇤
i (r)�i(r

0) . (2.12)



12 The BCS-BEC crossover

and, intuitively, ni can be regarded as the number of particle in the state
described by �⇤

i (r). Following Penrose and Onsager [32] the system is said to
be in a normal state if all the eigenvalues ni are O(1), conversely the system
is in a Bose-Einstein condensed state if one, or possibly more than one, of
the eigenvalues is O(N), i.e. if one single state has macroscopical occupation.
This has the advantage of naturally extending from the simple case of spinless
bosons to more complicated cases. A spin index, or any other index referring
to internal degrees of freedom of the particles, can be added to the position
of the particle without loss of generality.

Moreover the definition in Eq. (2.13) naturally leads to the concept of
off-diagonal long-range order (ODLRO) as a fundamental signal and character-
istic of condensation [33]; in fact one may take the limit lim|r�r

0|!1 ⇢1(r, r0)
in the single-particle density matrix in Eq. (2.12), observing that it factorizes
as:

lim
|r�r

0|!1
⇢1(r, r

0) =  ⇤(r0) (r) (2.13)

being non-zero only when the system is in a condensed state [33]: we related
the macroscopical occupation of the ground state, a feature naturally defined
in momentum space, to the non-decaying correlation at long distance, which
is obviously observed in real space. In turn the ODLRO can be related to
the gauge symmetry breaking, which is regarded by other as the fundamental
signature of Bose-Einstein condensation [34–36].

2.2 The BCS-BEC crossover: an introduction

What does Bose-Einstein condensation have in common with the Bardeen-
Cooper-Schrieffer theory of superconductivity? Let us go back for a moment
to the BCS theory, one could think of it as essentially the condensation of
Cooper pairs, which are bosonic objects, even if they are very extended in
space, their typical dimensions being determined by the Pippard coherence
length ⇠0 which typically is thousands of Å [37].

One could also imagine, in principle, of tuning the strength of the effective
electron-electron interaction, making it stronger: clearly the Cooper pairs are
going to shrink and end up, as the interaction is increased, forming tightly
bound bosonic molecules. These molecules will follow the Bose-Einstein
distribution and will condense below a certain critical temperature.

In both cases the condensation mechanism is due to Bose-Einstein con-
densation, however the Bose-Einstein condensation of Cooper pairs in the
former case happens on top of a completely filled Fermi sea, at positive and
finite chemical potential, while the BEC of bosonic molecules happens at
the ground state and the bosonic chemical potential is zero. Even if the
ultimate condensation mechanism is the same, and even if one can imagine
continuously tuning the interaction “connecting” somehow one regime to
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the other, clearly the two physical situations are profoundly different. The
BCS-BEC crossover is essentially the continuous evolution in a fermionic
system from a weakly-coupled BCS-like regime to a strongly-coupled regime
which, eventually, undergoes Bose-Einstein condensation.

Let us try to shed more light on the phenomenon by extending the defi-
nition of condensation in Eq. (2.12) and in Eq. (2.13); Leggett’s approach
naturally generalizes to the whole BCS-BEC crossover [9], and the condensa-
tion can be defined as “the onset of a microscopical eigenvalue in the relevant
reduced density matrix” [13], in particular in the case of fermions the relevant
reduced density matrix is the two-particle density matrix

⇢2(r1�1, r2�2, r3�3, r4�4) = h †
�1

(r1) 
†
�2

(r2) �3(r3) �4(r4)i (2.14)

where each  †
�(r) ( †

�(r)) respectively creates (annihilates) a fermion with
spin � at position r. Again, the reduced density matrix can be diagonalized
with real eigenvalues, being Hermitean

⇢2(r1�1, r2�2, r3�3, r4�4) =
X

i

ni�i(r1�1, r2�2)�
⇤
i (r3�3, r4�4) (2.15)

and the highest eigenvalue ni corresponds to the occupation of the lowest
energy state, signaling the condensation if O(N) [38].

Following the approach in Ref. [33] one introduces the center of mass
coordinates for each fermionic pair R ⌘ (r1 + r2)/2 and R

0 ⌘ (r3 + r4)/2
along with the relative distances r = r1 � r2, r0 = r3 � r4. In presence of
ODLRO the two-particle density matrix factorizes

lim
|R�R

0|!1
⇢2(r1 ", r2 #, r3 ", r4 #) = F ⇤(r)F (r0) , (2.16)

with F (r) = h "(r/2) #(�r/2)i, the limit being taken as the distance between
the centers of the fermionic pairs R and R

0 goes to infinity, keeping however
the fermionic pair sizes r and r

0 are finite. By analogy with the purely bosonic
case in Eq. (2.13), it is easily seen that F 6= 0 implies Bose condensation,
moreover by noting that F is the wave function of a Cooper pair one can
conclude that condensation in a fermionic system essentially originates “from
pairs of fermions forming Bose-Einstein degeneracy” [33]. In addition to that
F can be related [13] to the condensate fraction of the system as follows

N0 = 2

Z

dr |F (r)|2 (2.17)

and the condensate fraction will be object of extensive study in the context
of an unbalanced Fermi gas in the present thesis in Chapter 3.

A natural and compelling question one would ask is the following: is
it possible to experimentally realize this situation, in which the attractive
fermion-fermion interaction can be tuned at one’s will? It is extremely rare,
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even in other subfields of Physics, to be able to tune the interaction of
a system; for instance the vast majority of superconductors or superfluid
systems lie either in the BCS or in BEC limit and it is not possible to modify
the inter-particle interaction. The same happens in High Energy Physics,
as the interaction vertexes of the Standard Model are fixed, and in Nuclear
Physics.

The possibility of using ultracold Fermi atoms in order to realize a system
whose interaction can be tuned is quite recent, dating back to 2004. Given
these premises one may say that the issue of the BCS-BEC crossover would
have been interesting only from a theoretical or conceptual point of view,
nonetheless pioneering works in this field date back as far as the 1960s when
independently Keldysh, Yang and Popov [33, 39, 40] studied the possibility
of Bose condensation of paired fermions.

Subsequently Eagles [41] considered Zr-doped SrTiO3, both in bulk and in
thin films, observing that the usual assumption of the BCS theory ✏F � ~!D,
where ✏F is the Fermi energy and !D is the Debye cutoff energy, does not
apply to this system when the carrier concentration is sufficiently low. The
carrier concentration can parametrize the crossover, and Eagles remarkably
pointed out that the number equation and the gap equation need to be solved
together self-consistently, after relaxing the constraint that the chemical
potential should equal the Fermi energy, moreover he argued abandoning
the BCS limit implies that pairing and condensation need not to happen
at the same time, a consequence of the theory being that pairing without
superconductivity is allowed. Another pioneering work is due to Leggett [42]
who, motivated by the study of 3He systems, noted that the weak-coupling
BCS description of pairing can be extended to the strong coupling regime.

A fundamental characteristic of a BCS-like theory is that pairing and con-
densation are achieved at the same time, in other words, as the Cooper pairs
by are by construction of the BCS trial wavefunction in a zero-momentum
state, as soon as they are formed they collapse to the ground state. As soon
as one increases the interaction away from the BCS limit it is clear that there
is no reason for the pairing temperature and the condensation temperature
to coincide; in fact the pairing temperature T ⇤ grows unbounded as the BEC
regime is approached, while the critical temperature Tc, determined by the
condensation, approaches the constant value kBTc ⇡ 0.218✏F [43].

The finite temperature properties of the BCS-BEC crossover, in particular
the critical temperature, have been first studied in a pioneering work by
Nozières and Schmitt-Rink [44] showing that, while the mean-field theory
can describe the crossover at T = 0, finite-temperature effects are to be
studied including order-parameter fluctuations5; they determined the critical

5The mean-field theory and the contribution of the fluctuations in different contexts are
one of the main subjects of the present Thesis and will be thoroughly analyzed in Chapter
3 and in Chapter 4.
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temperature as a function of the coupling showing that it evolves smoothly
from the BCS limit to the BEC limit. Further investigations and refinements
of the theory led to the complete determination of the phase diagram for the
BCS-BEC crossover [43, 45], as reported in Fig. 2.1 and currently theoretical
predictions quantitatively reproduce uniform and trapped Fermi gases across
the crossover with great accuracy [46]. Referring to Fig. 2.1, as expected, the
pairing temperature T ⇤ coincides with the condensation temperature Tc only
in the deep BCS limit. Below Tc the Fermi gas evolves from a BCS-like state of
Cooper pairs, which are coherent in momentum space, to the BEC limit where
fermions pair forming tightly bound bosonic molecules before condensing;
above Tc we observe that T ⇤ divides the normal Fermi liquid state, composed
of unpaired fermions, from the Bose liquid state, where bosonic molecules
are formed but not yet condensed. The whole crossover is parametrized
as customary by the dimensionless quantity y = (kF as)�1, kF = (3⇡2n)1/3

being the Fermi momentum and as being the s-wave scattering length of the
fermion-fermion potential. Strictly speaking usually the crossover region is
determined by the condition �1 . y . 1, while the regions y & 1 (y . �1)
correspond, respectively, to the BEC (BCS) regimes.

It is worth noting that these theoretical investigations were pursued way
before the advent of cool atoms experiments; however further motivation to
investigate the intermediate pairing regime was given by the discovery [47] in
1986 of high-Tc superconductivity in cuprates and by the profusion of work
that followed, both experimental investigations and theoretical attempts to
explain the microscopical superconductivity mechanism. The observation
that the correlation length for these materials is far smaller than the BCS
one but still much greater than the coherence length of a Bose-Einstein
condensate, puts them in the crossover regime and, even if the microscopical
mechanism leading to superconductivity in cuprates is still not understood,
hints to the fact that the physics of the BCS-BEC crossover may be relevant
for cuprates.

However, in the very same years the road for the realization of cool atoms
experiments was being paved, as the techniques for cooling and manipulating
atoms were devised. A full analysis of these techniques would exceed the scope
of the present thesis, however I shall briefly review the cooling techniques,
the trapping techniques and the role of the Feshbach resonance.

2.3 A review of experimental techniques

When approaching the absolute zero, T = �273.15�C all the elements with
the exception of Helium are in a solid state [48]. However it is possible to
bring dilute atomic vapors to a metastable phase provided that the condition

⌧3 ⌧ ⌧2 (2.18)
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Figure 2.1: The phase diagram for the three-dimensional BCS-BEC crossover:
the light blue area marks the superfluid phase, below the critical temperature
Tc. The dashed line marks the pairing temperature Tp which coincides with
Tc in the BCS limit. From [11].

holds, where ⌧2 ⇠ n2 is the two-body scattering rate and ⌧3 ⇠ n3 is the three-
body recombination rate [49]. If the density is low enough the metastable
phase lifetime allows for experiments to be carried out. Typical values
for temperature and density of this metastable state are T ⇠ 50nK and
n ⇠ 5 · 1012cm�3.

The majority of experiments regarding ultracold atoms is carried out using
alkali atoms: this atomic species is chosen because of its simple electronic
structure, which in turns yields a simple hyperfine structure: one single
valence electron populates the outermost shell, on top of a completely filled
shell, so that the electronic spin will be S = 1/2 and the only valence electron
will be in the lowest angular momentum state, i.e. L = 0. The total electronic
angular momentum is J = S + L, and summing it to the nuclear spin I one
obtains the total angular momentum for the atom

F = J + I . (2.19)

Clearly either F = I � 1/2 or F = I + 1/2. It follows that in an alkali atom the
total spin is determined by the nuclear spin: the atom will be a composite
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boson if I is half-integer, i.e. for a odd number of nucleons, on the other
hand it will be a composite fermion if I is integer, i.e. for an even number of
nucleons. The atomic species 6Li and 40K are by far the most used in ultracold
experiments: they have an even number of nucleons and consequently integer
nuclear spin, so being composite fermions. Their hyperfine structure is shown
in Fig. 2.2; at zero external magnetic field only the hyperfine F = I ± 1/2

splitting is observed, in presence of a magnetic field the doublet splits into
(2S + 1)(2I + 1) = 4I + 2 different states [10].

Figure 2.2: The hyperfine structure of 6Li and 40K as a function of the
magnetic field, from Ref. [10].

The main experimental requirement in order to observe quantum degener-
acy in atomic vapors is a low temperature; to be more quantitative we define
the de Broglie thermal wavelength

�dB =
hp

2⇡mkBT
, (2.20)

where h is Planck constant, kB is Boltzmann constant, T is the temperature
of the system and m is the mass of the particle for which the de Broglie
wavelength is defined. One expects quantum effects to be relevant once the de
Broglie thermal wavelength is of the same order of the interparticle separation
` = n�1/3. For instance, a gas of bosons the BEC condition in Eq. (2.9) can
be rewritten as n�3

dB � 2.612. More generally and slightly less precisely the
phase space density ⇢ defined as

⇢ = n�3
dB (2.21)

is often used [50] to estimate when quantum effect are relevant, using the
condition ⇢ ⇠ 1. For this reason one will search for a low-temperature
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limit; one may also think of increasing the density, however the metastability
constraint in Eq. (2.18) forbids one from doing so, otherwise three-body
recombination processes would destroy the system.

Let us now briefly review how an ultracold gas is realized experimentally.
Typically at first an atomic beam is generated from an oven, at temperature
in the order of magnitude of 500K. The temperature is then drastically
lowered through laser cooling. Let us consider an atom interacting with a
laser beam, whose wavelength corresponds exactly to an absorption line of the
atom: the atom can absorb a photon, by stimulated absorption, which will
be emitted shortly after in a random direction. The net effect of this process
is not going to modify the average kinetic energy of the atoms as a whole, as
some of them will be accelerated, while other will be slowed down. However
if we tune the laser beam frequency just below an absorption line, atom
coming towards the light source will see the light, by Doppler effect, closer
to the absorption frequency and will interact with the beam at an increased
rate with respect to atoms moving away from the light source. By using six
different laser beams, one for each direction, every atom will be slowed, on
average, regardless of its initial direction. The fundamental introduction of
laser cooling opened the way to the realization of ultracold atoms experiments
and led, along with other cooling and trapping methods, to the award of the
1997 Nobel Prize for Physics to S. Chu [51], to C. Cohen-Tannoudji [52] and
to W. D. Phillips [53].

At last the temperature is finally lowered using evaporative cooling: the
potential well keeping the condensate-to-be in place is lowered to the point
that some particle can escape from it: on average a number of highly energetic
particles will escape due a higher kinetic energy, while the lower energetic
particles will mostly stay inside the well. The potential well is then raised
again to confine the condensate so that the particles can rethermalize to a
lower temperature; in the end only the least energetic atoms have remained
inside: the temperature will be lower.

Evaporative cooling is very effective in lowering the temperature of an
atomic gas and is the only method through which, at the time of writing,
degeneracy has been achieved in ultracold Fermi gas. However problems may
arise, as an atomic gas is a metastable state, whose lifetime needs to be much
longer than the time required for the most energetic component to evaporate.
For this reason evaporative cooling is used only as the last cooling stage,
and is enhanced being used in combination either with laser cooling or with
radio-frequency induced evaporation [54].

In order to keep the condensate in place it must be trapped, a widely
used trapping technique being magnetic trapping; the potential energy of an
atom whose magnetic moment is µm within an external magnetic field B is

U = �µm · B (2.22)

and if the magnetic field is not uniform will exert a force on the atom. Atoms
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can be classified in high-field seekers and low-field seekers accordingly to
their propensity of going towards areas with higher or lower magnetic field,
this characteristic being determined by the z component of the angular
momentum F . It turns out it is possible to create a magnetic field with a
minimum, trapping low-field seekers atoms. Usually magnetic techniques are
used to keep in place the bulk of the condensate, while finer manipulations are
implemented using optical techniques. Let us consider an atom placed into
a laser beam; the oscillating electric field E(r) will induce a dipole moment
in the atom, while coupling at the same time with the dipole itself [55, 56],
resulting in the following trapping potential

U(r) = �1

2
hd · E(r)i ⇡ �1

2
↵(!)hE2(r)i (2.23)

where d = ↵(!)E is the induced dipole moment, ↵(!) is the atomic polariz-
ability of each atom as a function of the angular frequency ! and the angular
brackets denote the time average. It follows that the oscillating electric field
will exert a force on each atom proportional to the square of the electric
field, moreover two interfering laser beams will create a constant intensity
configuration, resulting in a constant periodic potential. For high enough
intensity values the totality of the atoms will stay near the minimum of the
standing wave, for lower intensities hopping between different minima will
be allowed, obtaining an optical lattice [56]. Usually magnetic and optical
trapping techniques are used together in a single device, the so-called MOT
(magneto-optical trap).

The last ingredient needed to realize the BCS-BEC crossover in ultracold
Fermi atoms is the possibility of tuning the atomic scattering length with
continuity, which is possible through a Feshbach resonance: let us start
by considering two identical alkali atoms in two different hyperfine states,
scattering in the s-wave (open) channel, interacting through a potential Vbg(r)
which is a function of the relative distance. Due to the high magnetic field
typically used in ultracold atoms experiments, for instance in the case of 6Li
analyzed in Fig. 2.2 one can consider the atoms to be essentially completely
polarized in the direction of the external magnetic field6.

However it is in principle possible to have a spin singlet bound state,
formed by a spin-up and a spin-down fermion; in this case two fermions will
interact through a different potential which needs to support at least a bound
state. This scattering channel is often called the “closed channel”, see Fig. 2.3.
The hyperfine interaction can trade nuclear spin for electron spin, effectively
connecting the open and closed channel, allowing resonant tunneling [8].

The closed and open channel will have different spin configurations, so
that by tuning the external magnetic field it will be possible to tune the
energy of the bound state Ec, making it arbitrarily close to the open channel

6Without this simplifying assumption the theoretical description of the Feshbach
resonance is just slightly more complicated, see for instance Ref. [57].
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energy and almost degenerate, as outlined in Fig. 2.3. We call the energy
difference between the bound state and the open channel the detuning and
denote it with ⌫. As ⌫ approaches zero the mixing between the open and
closed channel will be very strong, strongly enhancing the cross-section. As
Ec is varied crossing the zero energy threshold, as measured from the open
channel, it can be shown that the effective scattering length goes from +1,
when Ec = 0� to �1 when Ec = 0+.
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Figure 2.3: Feshbach resonance: the open and closed channel, the first
(resonant) bound state in the closed channel is shown at energy Ec. The
energy Ec can be varied w.r.t. the energy of the open channel by tuning the
external magnetic field. From Ref. [58].

A precise description of this physical situation can be given by writing
down the two-channel Hamiltonian for a system of interacting fermions across
a Feshbach resonance [59]

Ĥ =
X

k,�

✏
k

â†
k,�âk,� +

X

q
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q

2
+ ⌫
⌘

b̂†
q
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q

+
X

q,k

g
k

⇣

b̂†
q

â
q/2�k,#âq/2+k," + h.c.

⌘

(2.24)
where the â (â†) operators annihilate (create) a particle representing an atom
in the open channel, respectively, whereas the b̂ (b̂†) operators annihilate
(create) a molecule in the closed channel, respectively. The g

k

matrix elements
contains the details of the open channel-closed channel interaction and ✏

k

=
k2/2m. It can be shown this the Hamiltonian can be reduced to a single-
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channel one [59]

Ĥ =
X

k,�

✏
k

ĉ†
k,� ĉk,� +

X

q,k,k0

U
k,k0 ĉ†

q/2+k,"ĉ
†
q/2�k,#ĉq/2�k

0,#ĉq/2+k

0," , (2.25)

with an effective single-channel potential U
k,k0 which will be a function of the

original inter-channel potential and of the detuning ⌫ [59]. This picture is
valid if resonance is broad7, for a narrow resonance the original two-channel
treatment must be retained [60]. As the bound state in the closed channel is
tuned the fermion-fermion scattering length changes as follows [58]:

a = abg

✓

1 � �B

B � B0

◆

(2.26)

where abg is the background scattering length, i.e. the scattering length
without the Feshbach resonance, �B is the resonance width and B0 is the
position of the resonance. In the case of 6Li the parameters of the most widely
used resonance are [50]: B0 = 834G, B0 + �B = 534G, abg = �1405a0.
The final result is that the scattering length of the interatomic potential can
be changed just by tuning the magnetic field, in other words the magnetic
field is exactly the turning knob needed in order to have a widely tunable
interaction, allowing the BCS-BEC crossover.

We conclude this introductory Chapter with a final remark: it is hard
to overstate the importance and unicity of this situation: in most physical
systems the coupling constants are predetermined and can not be modified
at one’s will. The possibility of modifying the atomic scattering length using
a Feshbach resonance is exceptional and makes ultracold Fermi gases the
perfect workhorse for an enormous number of experiments. Throughout the
years a plethora of experiments have been carried out manipulating ultracold
atoms in many different ways, for instance:

• Additional confinements can be added, extending the idea of optical
trapping, and in particular a gas can be trapped in quasi-2D configura-
tions or in optical lattices [56]. A two-dimensional Fermi gas will be
analyzed in this Thesis in Chapter 4.

• The polarization can be varied, by modifying the number of atoms in
each spin state [61]. The condensate fraction for a spin-unbalanced
Fermi gas will be analyzed in this Thesis in Chapter 3.

• Heteronuclear mixtures have been studied, observing the interaction of
different atomic species with different mass [62].

• One could use atomic species with a strong dipolar momentum, observ-
ing novel features owing to the dipole-dipole long-range interactions
[63].

7The notion of broad or narrow Feshbach resonance is defined comparing the resonance
width �B, which will be introduced in Eq. (2.26), with the Fermi energy.
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• Imaging techniques evolved as rapidly as manipulation techniques, lead-
ing, for instance, to the spectacular imaging of vortices in a superfluid
[64].

This incomplete list outlines only the major and most important features;
one should also remember that, besides equilibrium properties, recently
many out-of-equilibrium properties of ultracold Fermi gases have also been
investigated [62].



3
Mean-field treatment

for the BCS-BEC crossover

In this Chapter we develop the mean-field treatment of an ultracold Fermi gas
across the BCS-BEC crossover, as introduced in the previous Chapter. The
introductory part follows the classic approach to the theory of the BCS-BEC
crossover [13, 36, 65]; an equivalent path integral formulation is introduced
mainly based on Refs. [66, 67]; this approach may not seem advantageous
at mean-field level, however it allows for a clear and fast derivation of the
contribution of Gaussian fluctuations of the order parameter, which will be
introduced in Chapter 4.

The last Section, dealing with the condensate fraction [38, 68] of an
unbalanced Fermi gas represents original research work carried out during
my Ph.D. and published in Ref. [1].

3.1 Introduction: the extended BCS Hamiltonian

Let us consider a dilute, uniform, ultracold Fermi gas consisting of N fermions
in two different hyperfine spin states. Each spin state is labeled by the pseudo-
spin index � =", #, the gas is contained in a volume L3 and is described
within the grand-canonical ensemble at fixed chemical potential µ. We use the
one-channel model as analyzed in Eq. (2.25). Within the second quantization
formalism the Hamiltonian describing the system is the sum of a kinetic term

23
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and an interaction term, namely Ĥ = T̂ + V̂ with T̂ and V̂ defined as follows:

T̂ =
X

�=",#

Z

L3
d3r  ̂†

� (r)

✓

� ~2

2m
r2 � µ

◆

 ̂� (r)

V̂ =

Z

d3rd3r0  ̂†
" (r)  ̂†

#
�

r

0�V
�

r � r

0�  ̂#
�

r

0�  ̂" (r) , (3.1)

where the field operators  ̂� (r) and  ̂†
� (r) respectively annihilate and create

a fermion at position r with pseudo-spin1 �, m is the mass of each fermion
and the integral is extended over a volume L3. The first term T̂ is simply
the free Hamiltonian for a system of non-interacting fermions, while the
second term V̂ describes a generic interaction between opposite-spin fermions,
scattering through a generic potential V (r � r

0).
We introduce the particle number [69]

N = nL3 =
X

�

Z

L3
d3r h ̂†

�(r) ̂�(r)i (3.2)

which is most often fixed in experiments, and can be used as a constraint to
fix the chemical potential µ. We also introduce the Fourier anti-transform
for the fermionic field operators2:

 ̂� (r) =
1

L3/2

X

k

eik·rĉ
k,� , (3.3)

relating them to their momentum space counterparts. Eq. (3.3) can be used
to rewrite the interaction term as a momentum space sum:

V̂ =
1

L3

X

k,k0,q

V
k,k0 ĉ†

k

0+q"ĉ
†
�k

0#ĉ�k+q#ĉk" . (3.4)

having defined the matrix elements of the potential in momentum space, i.e.

V
k,k0 =

Z

L3
d3r ei(k�k

0)·rV (r) . (3.5)

We now replace the generic potential with a simple s-wave contact po-
tential; by setting V (r � r

0) = g0 �(3) (r � r

0) in the interaction term in Eq.
(3.1), one obtains

V̂ =

Z

L3
d3r g0 ̂†

" (r)  ̂†
# (r)  ̂# (r)  ̂" (r) (3.6)

1From now on for simplicity’s sake the pseudo-spin will often be called spin, with a
slight abuse of terminology.

2We write the equation for the annihilation operator, the equation for the creation
operator being the Hermitean conjugate.
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where g0 < 0 is the strength attractive interaction; its physical significance
will be analyzed later in Section 3.4, by relating g0 to observable quantities.
In momentum space one finds that for the contact potential V

k,k = g0, and
the interaction term of the Hamiltonian reads

V̂ =
g0

L3

X

k,k0,q

ĉ†
k

0+q"ĉ
†
�k

0#ĉ�k+q#ĉk" (3.7)

Obviously the interatomic potential is generally different from this approxi-
mation, which is only valid as long as gas is dilute; more quantitatively such
an approximation holds if the diluteness condition is satisfied, i.e. if kF R ⌧ 1
where kF is the Fermi momentum and R is the typical potential range [70].
In a three-dimensional Fermi gas the Fermi energy is related to the Fermi
wavevector kF and to the density n as

✏F =
~2k2

F

2m
=

~2(3⇡2n)2/3

2m
(3.8)

so that kF / n1/3. Introducing the average inter-particle spacing

` = n�1/3 (3.9)

the diluteness condition can be rewritten as R ⌧ `, i.e. the requirement
that the potential range is much smaller than the average atomic separation.
The diluteness condition is tantamount to requiring that the physics of the
system is dominated by two-body encounters and that the scattering length
as, which regulates low-energy two-body scattering processes, is the only
relevant quantity in the description of the interaction [48].

In principle the interaction term in Eq. (3.4) allows scattering processes
with arbitrary momentum transfer, the Feynman diagram corresponding
to the interaction term is shown if Fig. 3.1; however the so-called pairing
Ansatz only takes into account the scattering between states with opposite
momentum, with zero momentum transfer: how can this assumption be
justified?

In the case of a weakly-interacting Fermi gas, having a well defined Fermi
surface, one can consider that for q = 0 the density of states is maximum, as
any electron on the Fermi surface can scatter with a diametrically opposed
electron. On the other hand, if some momentum is transferred in the scattering
process the density of states is reduced, due Pauli blocking implying that
states below the Fermi surface are unavailable [10].

However the scope of applicability of the pairing Ansatz is way greater,
its validity extending to the whole zero-temperature BCS-BEC crossover,
being able to give a comprehensive description [42, 69] of the evolution at
T = 0 from the weak-coupling BCS limit to the strong-coupling BEC regime,
through a continuous evolution [42, 71] without thermodynamics transitions.
In fact, under the additional assumption of working at zero temperature,
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Vk,k’

-k+q, ↓

k, ↑

k’+q, ↑

-k’, ↓

Figure 3.1: The scattering between two opposite-spin atoms, interacting
through a generic potential with matrix elements in momentum space V

k,k0 .
The pairing Ansatz considers only scattering between opposite-momentum
states, with q = 0, i.e. zero transferred momentum.

the condition that pairing must happen in the zero-momentum state is not
restrictive [10].

We also anticipate that the many-particle ground state3 constructed
from zero-momentum pairs, as a consequence of the pairing Ansatz, besides
correctly describing a filled Fermi sea typical of the BCS limit at T = 0, will
also be able to describe tightly bound dimers characterizing the BEC limit
at T = 0, justifying a posteriori the extension of the pairing Ansatz and of
the BCS-like treatment to the whole crossover.

We can then take the interaction term as derived above in the q ! 0
limit:

X

kk

0
q

c†
k+q,"c

†
�k#c�k

0+q#ck0" �!
X

kk

0

c†
k,"c

†
�k#c�k

0#ck0" . (3.10)

In order to be able to treat the quartic interaction we introduce4 the
order parameter as follows [65]:

�0 = � g0

L3

X

k

hc�k#ck"i . (3.11)

Clearly the expectation value of the c�k#ck" operator should be zero over
a state with a definite number of particles, in particular it will be zero
when acting on the normal state; as we will see shortly the operator has,
on the other hand, a finite value when its expectation value is calculated

3To be introduced in Section 3.2.
4An alternative and equivalent formulation will be introduced with the path integral

formalism, by performing a Hubbard-Stratonovich transformation in the Cooper channel,
neglecting then the fluctuations of the auxiliary Cooper field.
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over the BCS ground state, signaling the appearance of a finite density of
Cooper pairs. In the weak-coupling limit, when paring and condensation are
achieved at the same temperature, �0 can also serve at the order parameter
of the superconducting transition; with a slight abuse of language �0 is often
referred to as the order parameter even across the whole BCS-BEC crossover.

We now use the newly-defined order parameter to write down a mean
field-approximation of the Hamiltonian, i.e. an approximation in which the
product of two operators is replaced as follows:

AB ⇡ hAiB + AhBi � hAihBi (3.12)

In the present context the mean field approximation is implemented as [65]:
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L3
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finally obtaining the Bogoliubov mean-field Hamiltonian [50]:

Ĥ =
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†
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X
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0ck,#c�k," + c†

k,"c
†
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+
L3

g0
|�0|2 (3.14)

One can then cast the electron creation/annihilation operators into a
spinor, using the Nambu-Gor’kov spinor formalism [36, 72]:
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as:
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where ⇠
k

= ~2k2/2m � µ. The second sum arises from the anticommutation
of the fermionic fields; it is an additive constant to the energy of the system
and will be neglected from now on.

We now simplify the Hamiltonian by searching for a different basis in
which the matrix M is diagonal. At this stage, the non-diagonality of the
Hamiltonian means that the fundamental excitations of the system are not
just electrons or holes: switching to a different basis is the mathematical
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counterpart of finding a suitable combination of electrons and holes which is,
indeed, a fundamental excitation for the system.

A Hermitean matrix M 2 M2⇥2 (C) can be diagonalized by an unitary
matrix, i.e. a matrix U such that UU † = 1 = U †U . All 2 ⇥ 2 Hermitean
matrices can be parameterized by two complex parameters u and v as

U =

✓

u⇤ �v
v⇤ u

◆

(3.17)

subject to the condition |u|2 + |v|2 = 1. By an adequate choice of the
parameters the Hamiltonian in Eq. (3.16) is diagonalized in terms of the new
fields
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as follows:
Ĥ � µN̂ =
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k�
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k�bk�Ek

+
L3
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|�0|2 (3.19)

up to an irrelevant additive energy constant, the complex parameters u
k

and
v
k

defining the transformation being subjected to the condition

|u
k

|2 + |v
k

|2 = 1 . (3.20)

The newly-defined field operators satisfy the usual anticommutation
relations, hence they represent fermionic (quasi-)particles; however they have
a peculiar spectrum given by the energy eigenvalues of the new Hamiltonian

E
k

=
q

⇠2
k

+ |�0|2 . (3.21)

3.2 The BCS ground state

To find the a suitable many-particle ground state we search for the vacuum
state of the algebra

n

b
k�, b

†
k�

o

, i.e. a state which is annihilated by every b
k�.

It is easily seen that this requirement is met by a state

|BCSi =
Y

k

b
k"b�k# | 0i , (3.22)

which can be rewritten by means of the transformations in Eq. (3.18) in
terms of the electron/hole operators as:
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where |0i is the vacuum state and the P †
k

⌘ c†
k"c

†
�k# operator creates a Cooper

pair, in which the fermion have (as by definition) opposite momenta k and
�k and opposite spins.

We already discussed the assumption that the pairing happens at zero
momentum: the BCS ground state in Eq. (3.23) describes the coherent states
of Cooper pairs, and it may seem tailored to the BCS regime; on the contrary
it has been shown that its scope of application is way broader, and that
it can be used at zero temperature across the full BCS-BEC crossover [69,
73], at the end of the present Section will we will verify that, in fact, the
BCS wavefunction can describe the molecular dimers of the BEC limit of the
crossover.

In order to find an expression for the parameters u
k

and v
k

, we note that:

• The complex parameters u
k

and v
k

can be taken as real without loss
of generality. As we have seen using a contact potential the order
parameter does not depend on k; moreover it can be made real through
a global gauge transformation: suppose that �0 = |�0| ei�, then one
can put into action the following transformation:

c
k� �! e�i�

2 c
k� c†

k� �! ei�

2 c†
k� ; (3.24)

of course the physics of the system is left unchanged and now �0 2 R.
As a consequence the matrix M is now real and can be diagonalized by
an ortogonal transformation, i.e. the matrix U
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can be written as:
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The corrispondence u
k

= cos (✓
k

) and v
k

= cos (✓
k

) shows that the
parameters can be taken as real without loss of generality.

• It is also reasonable to assume that u
k

= u|k|, given the rotational
invariance of the system.

Deriving an expression for u
k

and v
k

is now just a matter of finding the
change of base matrix for the transformation  

k
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k

and equating it to
the entries of the matrix in Eq. (3.25); we then find:
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We impose that the Bogoliubov quasiparticles should follow a Fermi-Dirac
distribution, being fermions

8
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with
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. (3.28)

By using Eqs. (3.27) and Eq. (3.11) one obtains the gap equation:
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having used the identity 1 � 2nF (k) = tanh(�E
k

/2). Finally the number
equation can be found calculating the expectation value of the number density
operator n
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As opposed to the standard BCS problem the chemical potential µ is not
fixed to ✏F , but it is calculated self-consistently by fixing the total number of
particles. In fact the gap equation in Eq. (3.29) and the number equation
in Eq. (3.30) are called the (extended) BCS equations and must be solved
jointly in order to obtain the mean-field dynamics of a uniform Fermi gas.

One should also note that at zero-temperature limT!0 tanh (�E
k

/2) = 1,
so that the gap and number equations simplify to
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and
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. (3.32)

In fact the mean-field theory can provide qualitatively correct predictions
at T = 0, whereas it fails in describing most finite temperature effects. We
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note that the integral appearing in Eq. (3.31) is divergent, a regularization
procedure for the gap equation will be analyzed in Section 3.4.

The condensate number is defined as the number of fermionic pairs
occupying the ground state: clearly a finite condensate number signals the
onset of condensation, as also analyzed in Eq. (2.17). It is easily shown [38,
74] that in the present context the condensate number can be calculated as
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/2) (3.33)

reducing in the zero-temperature limit to
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The integration can be carried out analytically and leading to the following
expression [38] for N0:
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The condensate fraction, defined as � = N0
N has been extensively studied

across the whole crossover, going from extremely small values in the deep-
BCS regime, where only electrons at the Fermi level pair and condensed, to
� ⇠ 0.5 in the deep-BEC regime, where all fermions are paired in bosonic
dimers. The mean-field theory for the condensate fraction [38] shows good
agreement with experimental data at T = 0 from the deep BCS regime
to slightly beyond unitarity on the BEC side; for stronger interactions the
agreement with experimental data is lost, likely due to the unreliability of
experimental data due to three-body losses [38]. The condensate fraction for
a spin-unbalanced Fermi gas will be analyzed in this Thesis in Section 3.5.

In conclusion of the present Section we stress that, following this approach,
the BCS wavefunction is not a variational Ansatz whose parameters are to be
optimized to have a minimum of the ground state energy expectation value.
Rather we have demonstrated that the Bogoliubov quasiparticles are the
fundamental excitations of the system described by the Hamiltonian in Eq.
(3.16), created the ground state for the algebra of the Bogoliubov operators
and finally calculated all other relevant quantities by requiring the same
operators to follow the Fermi-Dirac distribution.

At last, as anticipated in the previous Section, an analysis of the wave-
function can provide a a posteriori justification of the usage of the pairing
Ansatz and of the whole BCS description across the crossover, showing that
the validity of the ground state in Eq. (3.23) extends up to the BEC regime
at zero temperature. Let us start from the BCS limit: here a simultaneous
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solution of Eq. (3.29) and of Eq. (3.30), together with the condition in Eq.
(3.20) gives the following density of states5

n
k

= ⇥(1 � |k|/kF ) (3.36)

describing the Fermi surface and a constant density of state up to |k| = kF .
As the interaction gets stronger the step function at the Fermi wave-vector
smoothens and the Fermi surface disrupts. It can be rigorously shown that
in the BEC limit the density distribution is [69]

n
k

=
4(kF as)3

3⇡(1 + |k|2a2
s)

2
(3.37)

which is proportional to the square of the Fourier transform of the wavefunc-
tion of molecular dimers, signaling that the BCS wavefunction in Eq. (3.23)
can also reproduce, at least at a quantitative level, the physics of the strong
BEC limit [42].

Still this picture should be regarded as an approximation, for instance
the density fluctuations and hence the sound mode are completely neglected
in this scheme. The extension of the mean-field theory to include order-
parameter fluctuations and the sound mode will be the main object of Chapter
4. Moreover the present description correctly reproduces the BEC limit as
a gas of tightly bound but weakly interacting bosons, however the boson-
boson scattering length turns out to be ab = 2.0as, while more sophisticated
approaches shows that the exact value should be ab = 0.6as; an analytical
derivation of this relation is analyzed in Ref. [4] and will be reported in
Section 4.4.

3.3 Extended BCS equations from the field integral

In the present Section we give an alternative and complementary description
of the mean-field theory for the BCS-BEC crossover, deriving the same
extended BCS equations in Eq. (3.29) and in Eq. (3.30) by means of a path
integral approach [36, 67, 71, 75, 76]. This approach is completely equivalent
to the treatment in Section 3.1 and Section 3.2, however it allows for an
easier and more natural introduction of the beyond-mean-field theory of order
parameter fluctuations which will be analyzed in Chapter 4.

The grand canonical partition function Z of d-dimensional system of
interacting fermions at temperature T contained in a volume Ld, described
within the grand canonical ensemble at fixed chemical potential µ can be
written using the path integral formalism as

Z =

Z

D �D ̄�e�S[ 
�

, ̄
�

] . (3.38)

5Comparing Eq. (3.30) and Eq. (3.26) and imposing N = (2/L3)
P

k nk one immediately
sees that nk = v2

k.
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With respect to Eq. (3.1) the field operators describing the fermions have
been replaced by the anti-commuting Grassman field variables  �(x, ⌧) and
 ̄�(x, ⌧), where ⌧ is the imaginary time. The fields  and  ̄ satisfy anti-
periodic boundary conditions in the imaginary time, representing a fermionic
object, i.e. they obey the condition  (x, 0) = � (x, ~�) at every position
in space and similarly for  ̄. Here � = 1/(kBT ) and kB is the Boltzmann
constant. The path integral in Eq. (3.38) can then be thought of as a sum
over every configuration of the field, where each configuration is weighted by
a factor exp(�S).

The action S[ �,  ̄�] = Sfree[ �,  ̄�] + Sint[ �,  ̄�] is a functional of the
Grassman fields  �(x, ⌧) and  ̄�(x, ⌧) and describes the same physics as in
Eq. (3.1), however within this formalism, the free and interaction part of the
Hamiltonian in Eq. (3.1) are replaced by the free and interaction part of the
action, namely
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and
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(3.40)
all the spatial integrals are extended over the volume Ld. Exactly as done
before and for the very same reasons, typically for ultracold Fermi gases
the interaction can be modeled by a contact interaction. When V (x � y) =
g0 �(x � y) the interaction part of the action in Eq. (3.40) simplifies to:

Sint[ �,  ̄�] = g0

Z ~�

0
d⌧

Z

ddx  ̄"(x, ⌧) ̄#(x, ⌧) #(x, ⌧) "(x, ⌧) (3.41)

and the Hubbard-Stratonovich transformation is immediately performed
introducing the identity6

e�S
int

[ 
�

, ̄
�

] /
Z

D�D�̄ e�S
hs

[ 
�

, ̄
�

,�,�̄] (3.42)

where

Shs[ �,  ̄�,�, �̄] = �
Z ~�

0
d⌧

Z

ddx

"

|�(x, ⌧)|2
g0

+

+ �̄(x, ⌧) #(x, ⌧) "(x, ⌧) +�(x, ⌧) ̄"(x, ⌧) ̄#(x, ⌧)

#

(3.43)

6The identity holds modulo a global multiplicative factor, hence the / sign; however
a global multiplicative constant in the partition function is irrelevant, as it becomes an
additive constant when the free energy is calculated.
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which can be verified by completing the square in the r.h.s. and performing
a straightforward Gaussian integration over �, �̄ [36].

The newly introduced auxiliary fields �(x, ⌧) and �̄(x, ⌧) are pairing
fields, representing a Cooper pair7; being bosonic objects they obey symmetric
boundary conditions in imaginary time, i.e. �(x, ~�) = �(x, 0) holds at every
point in space, and similarly for �̄(x, ⌧). The quartic interaction appearing in
the original action due to the four-fermion vertex is now decoupled, however
the simplification of eliminating the quartic interaction comes at the expense
of introducing the new auxiliary fields � and �̄, whose dynamics will have
to be treated in an approximate way.

The complete action can be written as

S[ �,  ̄�,�, �̄] =

Z ~�

0
d⌧

Z

ddx

"

 ̄(x)
⇥

�G�1
⇤

x
 (x) � |�(x)|2

g0

#

(3.44)

having introduced the (d + 1)-dimensional coordinate x = (x, ⌧) for the
sake of simplicity and having also introduced the Nambu-Gor’kov spinors in
coordinate space

 (x) =

✓

 "(x)
 ̄#(x)

◆

 ̄(x) =
�

 ̄"(x)  #(x)
�

, (3.45)

and the physics of the system is encoded in the inverse Green’s function,
which in coordinate space representation reads:

⇥

�G�1
⇤

x
=

 

~@⌧ � ~2

2mr2 � µ ��(x, ⌧)

��̄(x, ⌧) ~@⌧ + ~2

2mr2 + µ

!

(3.46)

It is now convenient to introduce the frequency-momentum representation
for the field operators. The Fourier transform for the fermionic field  � reads:

 �(k, i!n) =
1

p

�Ld

Z

Ld

ddx

Z ~�

0
d⌧ exp(�ik · x + i!n⌧) �(x, ⌧) (3.47)

while, on the other hand, the bosonic field � has the following Fourier
transform

�(q, i⌦n) =
1

p

�Ld

Z

Ld

ddx

Z ~�

0
d⌧ exp(�iq · x + i⌦n⌧)�(x, ⌧) (3.48)

having introduced the fermionic Matsubara frequencies !n = 2⇡n/� and the
bosonic Matsubara frequencies ⌦m = (2m + 1)⇡/�.

7The statement can be made more precise by noting, with Ref. [77], that the pairing
field � at a classic level is just a shorthand for   and obeys the same equations of motion.
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It is now possible rewriting [67] the action in Eq. (3.44) in momentum
space as:

S[ �,  ̄�,�, �̄] =
X

k,k0

 ̄(k)
⇥

�G�1
⇤

k,k0  (k0) �
X

q

|�(q)|2
g0

(3.49)

having introduced the (d + 1)-dimensional momentum-space fermionic coor-
dinates k = (k, i!n), the bosonic coordinates q = (q, i⌦m) and the Nambu-
Gor’kov spinors in complete analogy with Eq. (3.15):

 (k) =

✓

 "(k, i!n)
 ̄#(�k, i!�n)

◆

 ̄(k) =

✓

 ̄"(k, i!n)
 #(�k, i!�n)

◆T

(3.50)

The integration over the  ,  ̄ fields is Gaussian and can be carried out
exactly using the relation

Z

D �D ̄�e�
P

k,k

0  ̄(k)M
k,k

0 (k0) = Det M(k, i⌦n) (3.51)

so that the partition function is now written in an exact form as an path
integral over the �, �̄ fields:

Z =

Z

D�D�̄ exp

"

Tr ln
�

�G�1
�

+
X

q,m

|�(q, i⌦m)|2
g0

#

(3.52)

and the trace Tr(#) has to be taken in the Nambu-Gor’kov space and in the
frequency-momentum space.

Up to this point the treatment has been kept exact and Eq. (3.52), albeit
impossible to treat analytically, is an exact description of the system. In
order to continue the analytical treatment it is necessary to decompose the
pairing field � as the sum of a uniform and constant mean-field value8, which
will be self-consistently determined later as the saddle point of the action,
and a fluctuation field:

�(q, i⌦m) = �0 �(q)�m,0 + ⌘(q, i⌦m) (3.53)

Referring to Eq. (3.49) the inverse Green function
⇥

�G�1
⇤

k,k0 in fre-
quency momentum representation is readily found starting from Eq. (3.44),
introducing the frequency-momentum representations for the fields and let-
ting the differential operators act on them. One can then decompose the
inverse Green’s function as the sum of a saddle-point contribution �G�1

sp and
a fluctuation contribution F

⇥

� G�1
⇤

k,k0 =
⇥

� G�1
sp
⇤

k,k0 +
⇥

F
⇤

k,k0 , (3.54)

8It is uniform in coordinate space and constant with respect to the imaginary time ⌧ .
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with the the saddle point part, which is diagonal in momentum space

⇥

� G�1
sp
⇤

k,k0 =

 

�i!n + ~2k2

2m � µ ��0

��0 �i!n � ~2k2

2m + µ

!

�(k � k

0)�n,n0 (3.55)

and the fluctuation part

⇥

F
⇤

k,k0 =

✓

0 �⌘(k + k

0, i⌦n+n0)
�⌘(k + k

0, i⌦n+n0) 0

◆

. (3.56)

This notation is particularly convenient because the inverse Green function
encodes the full physics of the system, and different approximation schemes
will correspond to different choices for �G�1. In particular the simplest
approximation scheme consists in completely ignoring the fluctuations, using
the following replacement for the coordinate-space pairing field:

�(x, ⌧) ! �0 . (3.57)

In momentum space this approximation is tantamount to requiring that the
pairing must happen in a zero-momentum state, which is exactly the pairing
Ansatz we analyzed in the previous Section:

�(q, i⌦m) ! �0 �(q)�m,0 . (3.58)

Finally in terms of the inverse Green’s function the approximation reads:

� G�1 ! �G�1
sp , (3.59)

completely neglecting the fluctuation contribution coming from F. Of course
the action is greatly simplified, as the � field loses the dynamics and it is
replaced by its saddle-point value �0: it is no longer necessary integrating
over the �, �̄ fields. The mean-field partition function obtained through this
treatment reads

Zmf = e��⌦eff (3.60)

with the effective grand potential

⌦eff = �Ld�
2
0

g0
� 1

�

X

k

X

n

ln
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✓

�i!n + ⇠
k

��0

��0 �i!n � ⇠
k

◆�

. (3.61)

with ⇠
k

= ~2k2/2m � µ. The gap equation is then found imposing the saddle
point condition to the grand potential, i.e.:

@⌦

@�0
= 0 (3.62)

yielding
1

g0
=

1

�

X

k,n

1

(i!n)2 � E2
k

(3.63)
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with E
k

=
q

⇠2
k

+�2
0. The sum over n is readily carried out using the identity

� 1

�

X

n

1

(i!n)2 � x2
=

tanh(�x/2)

2x
(3.64)

holding for fermionic Matsubara frequencies, which is derived by transforming
an infinite series to a contour integration in the complex plane and deforming
it; this technique is analyzed in Appendix A. Eq. (3.64) directly leads to the
gap equation

1

g0
= � 1

Ld

X

k

tanh(�E
k

/2)

2E
k

. (3.65)

The number equation, on the other hand, is obtained again from the grand
potential in Eq. (3.61), whose (formally divergent) Matsubara sum needs to be
evaluated introducing complex convergence factors, owing to anti-commuting
nature of the original  ,  ̄ field, as thoroughly analyzed in Ref. [71]. Here
we just report the final result, which is

⌦eff = �Ld�
2
0

g0
+
X

k

(⇠
k

� E
k

) � 2

�

X

k

ln
⇣

1 + e��Ek

⌘

(3.66)

modulo an infinite constant which does not depend on the parameters of
the theory and is then irrelevant; finally using the thermodynamic relation
N = �@⌦/@µ, one gets

n =
N

Ld
=

1

Ld

X

k

✓

1 � ⇠
k

E
k

tanh(�E
k

/2)

◆

. (3.67)

In conclusion we note that Eqs (3.67) and (3.65) in complete agreement
with Eq. (3.29) and Eq.(3.30), showing the equivalence of the path integral
formulation.

3.4 Regularized potential

A contact potential V (r � r

0) = g0�(3) (r � r

0) can be used to sketch a more
realistic potential, but it has got two main problems:

• The approximation works only in the dilute limit, i.e. only as long as the
interatomic distance is bigger than the scale length of the potential. One
may expect that the approximation should break for small distances,
i.e. for large momenta: the gap equation, indeed, has an ultraviolet
divergence.

• It is not clear how the coupling constant g0 relates to the physics of
the system. Intuitively it is an interaction strength, related to the
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intensity of the attractive coupling, however one does not know how it
relates to observable quantities. In order to solve the problem one has
to find a relation between the coupling constant g0 and some physically
observable quantity, the most natural being the scattering length as.
In turn the scattering length is easily tuned in ultracold Fermi gases,
being related to the external magnetic field by Eq. (2.26).

In the present Section we derive a relation linking the potential strength
g0 to the scattering length as; as a result it will be possible to eliminate g0

from the treatment, regularizing the gap equation, removing the ultraviolet
divergence.

The derivation of such a relation involves some scattering theory. We will
follow the approach in Refs. [36, 78]. Let us consider a scattering problem in
which two particles are interacting through a �-potential. We can separate
the center of mass motion and the relative motion of the particles (the latter
being the interesting one!), so that the relative motion is described by the
Hamiltonian Ĥ = Ĥ0+V̂ , with Ĥ0 = p̂2/2µ, with the reduced mass µ = 1/2 m,
as the two particles have the same mass. Let |�i be the eigenstate of the free
Hamiltonian Ĥ0, i.e. a plane wave with energy E, and be | i the eigenstate
of the complete problem, with energy E as well. Then the time-dependent
Schrödinger equation is equivalent9 to the Lippman-Schwinger equation [79]:

| i = |�i +
1

E � Ĥ0

V̂ | i (3.68)

The equivalency can be verified by left multiplying for E � Ĥ0, obtaining,
indeed, the Schrödinger equation for | i. A formal solution to can be obtained
iterating Eq. (3.68):

| i =
⇣

1 +
1

E � Ĥ0

V̂ +
1

E � Ĥ0

V̂
1

E � Ĥ0

V̂ +

+
1

E � Ĥ0

V̂
1

E � Ĥ0

V̂
1

E � Ĥ0

V̂ + . . .
⌘

|�i . (3.69)

Moreover we introduce the T̂ matrix

T̂ ⌘ V̂ + V̂ Ĝ0T̂ (3.70)

with Ĝ0 = (E � Ĥ0)�1 and Eq. (3.69) can be rewritten as:

| i = |�i +
1

E � Ĥ0

T̂ |�i . (3.71)

9Strictly speaking the equation is ill-defined for every E in the spectrum of Ĥ0, by
adding ±i� to the denominator and taking the � ! 0 limit one is able to solve this problem
and to select, respectively, outgoing and incoming waves. In other words Ĝ0 = (Ĥ0 �E)�1

is the Green function for the free case, and one has to choose how to go around the poles
on the real axis.
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It is convenient to think of the T̂ matrix as an operator taking the energy
E = q2

2m as a parameter; its matrix elements in momentum space are:

T
kk

0(E) =
⌦
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�T̂ (E)
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k

↵
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+
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k

↵

=

= V
kk

0 +
X

pp

0

V
kp

G0,pp0 (q) T
p

0
k

0(E) (3.72)

When the Green’s function G0,pp0 is expressed in momentum space represen-
tation it is diagonal and it has the following form [80]:

G0,pp0(E) =
�
pp

0

E � p2

2µ

= �
pp

0G0,p(E) (3.73)

defining G0,p(E). We can further simplify the equation for the T̂ matrix
elements by inserting a contact potential which in momentum space reads
V
kk

0 = g0 with no dependence upon the momenta, so that:

T
kk

0(E) = g0 + g0

X

p

G0,p (E) T
pk

0(E) = g0

 

1 +
X

p

G0,p (E) T
pk

0(E)

!

.

(3.74)
It is easily verified that the expression between parentheses is akin to a
geometric series, in fact iterating shows that the T matrix with a � potential
is

T
kk

0(E) = lim
n!1

g0

h

1 + g0⇥(E) + (g0⇥(E))2 + · · · + (g0⇥(E))n
i

(3.75)

with
⇥ (E) =

X

p

G0,p(E) =
X

p

1

E � p2

2µ

(3.76)

so that our final result is, by summing the geometric series in Eq. (3.75), is

T
kk

0 (E) =
g0

1 � g0⇥ (E)
. (3.77)

Also it can be demonstrated [80] that in the low-energy, low-momentum limit
one has T

kk

0(E) = 4⇡~2

m as, so that we finally have a relation between g0 and
as:

4⇡~2

m
as =

g0

1 � g0⇥(0)
(3.78)

which can be rearranged, reinstating the particle mass m = 2µ in the r.h.s.,
as:

m

4⇡~2as
=

1

g0
+
X

p

1
p2

m

. (3.79)

The integral in the r.h.s. is ultraviolet-divergent, and cannot be used to
relate the strength of the attractive potential g0 to the scattering length as.
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A possible solution would consist in introducing a momentum cutoff ⇤ on
the integral, carefully choosing ⇤ to be large enough not to interfere with the
physical features of the system. In the present case a simpler solution can be
used: the zero-temperature gap equation, in Eq. (3.31)

1

g0
= � 1

Ld

X

k

1

2E
k

(3.80)

can be combined10 with Eq. (3.79), eliminating g0, finally obtaining the
regularized gap equation [81]:

m

4⇡~2as
=

1

Ld

X

k

✓

m

k2
� 1

2E
k

◆

(3.81)

which can be finally used to determine �0 as a function of as.

3.5 The unbalanced Fermi gas

In this Section we discuss the mean field treatment for an unbalanced Fermi
gas, i.e. a Fermi gas in which the number of atoms in one (pseudo)-spin state
is different from the number of atoms in the other state. This topic has been
extensively studied, both from a theoretical [82–101] and experimental [61,
102, 103] point of view, its experimental realization exploits Rabi oscillations
and evaporative cooling techniques to vary the number of fermions in each
(pseudo)-spin species [67].

An unbalanced Fermi gas shows novel features and a far richer phase
diagram with respect to the balanced counterpart. At T = 0 a quantum
phase transition is observed between the superfluid and normal state; exotic
phases characterized by non-zero momentum pairing have been predicted
[104], moreover in a trapped unbalanced Fermi gas one expects to find a
phase separated regime [61, 82, 83, 87, 91, 93, 95, 97, 100–102] in which
an inner superfluid core is surrounded by an unbalanced normal state. The
fundamental signature of such phase-separated regime is a jump in the density
between the two phases, which has been analyzed theoretically [105] and
observed experimentally [106].

We derive a zero-temperature mean-field treatment for an unbalanced
Fermi gas, investigating the condensate fraction as a function of the fermion-
fermion attractive strength and of the polarization, in the uniform and in
the trapped case. We also report condensate density profiles, showing that,
like the normal density, the condensate density undergoes a jump between
the superfluid and normal phase. The results we report in this Section are
published in Ref. [1].

10Having converted the momentum sums to integrals
P

k ⇡ (2⇡)�3
R

d3k and vice-versa.
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3.5.1 The extended BCS equations

We consider a two-spin-component (� =", #) uniform Fermi gas contained in
a volume L3, with unequal spin populations, each fermion having mass m.
The fermions interact via an attractive s-wave contact potential. Without an
external confinement, the uniform system can be described by the following
(Euclidean) Lagrangian density:

L =
X

�=",#
 ̄� (r, ⌧)

✓

~ @
@⌧

� ~2 r2

2m
� µ�

◆

 � (r, ⌧) +

+ g0  ̄" (r, ⌧)  ̄# (r, ⌧) # (r, ⌧) " (r, ⌧) (3.82)

where  �,  ̄� are the Grassmann field variables, g0 < 0 is the strength
coupling of the fermion-fermion attractive interaction and µ� is the chemical
potential of the component �.

The only difference with respect to the treatment in Section 3.3, whose
Lagrangian can be read from Eq. (3.39) and Eq. (3.40), is the introduction
of a spin-dependent chemical potential µ�; we will see, however, that this
seemingly innocuous change has many consequences and makes the treatment
of the unbalanced Fermi gas rather more complicated than its balanced
counterpart. We define the average chemical potential µ and the unbalance
chemical potential ⇣ as the half-sum and the half-difference between the the
two chemical potentials, respectively:

µ =
µ" + µ#

2
⇣ =

µ" � µ#
2

(3.83)

Without loss of generality, one can assume that the " species is the majority
component. The partition function function for the system can be written as
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D �D ̄� e�S[ 
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0
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d3rL , (3.84)

where � = (kBT )�1, T being the temperature.
The same mean-field treatment as in Section 3.3 is performed, in particular

the quartic interaction is decoupled by means of a Hubbard-Stratonovich
transformation, and the resulting pairing field is approximated by its uniform
and constant saddle point value �0, neglecting the fluctuations. After
rewriting the field operators in momentum space representation, the physics
of the system is then encoded in the 2 ⇥ 2 momentum-space Nambu-Gor’kov
inverse Green function:

� G�1 =

 

�i!n � ~2k2

2m + µ + ⇣ ��0

��0 �i!n + k2

2m � µ + ⇣

!

(3.85)
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from which, setting det
�

�G�1
�

= 0 and solving for i!n one gets the spectrum
of single-particle excitations:

E±
k

=
q

⇠2
k

+�2
0 ± ⇣ , (3.86)

where ⇠
k

= ~2k2

2m � µ as also found, for example, in Ref. [107], the + (�)
sign holding for the " (#) component, respectively. Upon integration of
the fermionic fields  ̄ (r, ⌧) and  (r, ⌧) the summation over Matsubara
frequencies yields the following effective grand potential [67]:
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(3.87)
with E

k

=
q

⇠2
k

+ |�0|2. From the effective grand potential (3.87) we obtain
the extended BCS equations at finite temperature, in particular by imposing
the saddle point condition @⌦eff/@�0 = 0 one gets the gap equation
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and using the thermodynamic relation for the number of fermions in the �
spin species N� = � @

@µ
�

⌦eff one gets the number equation for the average
number of particles
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(3.89)

and for the particle unbalance

�N =
N" � N#
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)
(3.90)

and finally N",# = N ± �N . The gap equation can be regularized as done in
the balanced case by using Eq. (3.79) to eliminate g0, yielding
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(3.91)

A numerical simultaneous solution of Eq. (3.89), Eq. (3.90) and Eq.
(3.91) in the T ! 0 limit provides a determination of µ and � as a function
of N", N# and y = (kF as)�1. Moreover, in the zero temperature limit the
grand potential from Eq. (3.87) reads
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with k� =
q

2m
~2

r

max
⇣

µ �
p

⇣2 ��2
0, 0
⌘

and k+ =
q

2m
~2

q

µ +
p

⇣2 ��2
0.

The first two terms in Eq. (3.92) are identical to their balanced counterpart
we already analyzed, the third term, however, contributes to thermodynamics
of the system provided that the condition

⇣ � ⇣c ⌘
q

�2
0 + min2(µ, 0) (3.92)

is met, corresponding to the magnetized superfluid (MS) regime. On the
other hand, if ⇣ < ⇣c the thermodynamics of the system is identical to that
of an unbalanced system, because k� = k+ and the last summation in Eq.
(3.92) extends over all momenta.

3.5.2 Condensate fraction

The condensate fraction is the ratio � = N0
2N with N0 the condensate number of

Fermi pairs [13, 38, 74] and N the total number of particles. The condensate
fraction plays a crucial role in the description of a superfluid system: in two
experiments [108, 109], the condensate fraction of Cooper pairs [33], which is
directly related to the off-diagonal-long-range-order of the two-body density
matrix of fermions as already analyzed in Eq. (2.17), has been investigated
in dilute vapors of ultracold 6Li atoms in the BCS-BEC crossover exhibiting
a quite good agreement with mean-field theoretical predictions [38, 110] and
Monte-Carlo simulations at zero temperature [111]. In the present Subsection
we study the condensate fraction for the an unbalanced uniform Fermi gas.

Following the approach in Refs. [71, 112], using the Nambu-Gor’kov
Green function, the condensate number N0 is given by

N0 =
1

�2

X

p

X

n

X

m

G21 (p, i!n) G12 (p, i!m) , (3.93)

and G21 and G12 are calculated by inverting the matrix in Eq. (3.85), namely

G12 (k, i!n) = � �0

(i!n � ⇣)2 � ⇠2
k

� |�0|2
= G21 (k, i!n) . (3.94)

After performing the summation over the Matsubara fermionic frequencies,
one obtains the condensate number in Eq. (3.93) as a function of the chemical
potential µ and of the order parameter �0:

N0 =
X

k

�2
0

4E2
k

✓

1

2
tanh

✓

�

2
(E

k

+ ⇣)

◆

+
1

2
tanh

✓

�

2
(E

k

� ⇣)

◆◆2

(3.95)

Again we take the T ! 0 limit, finding

N0 =
X

|k|/2[k�,k+]

�2
0

4E2
k

, (3.96)
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similar to the condensate number in the balanced case N0 =
P

|k|�
2
0/4E2

k

,
except for the constraint on the momenta, excluding from the summation
wave vectors whose modulus is between k� and k+. In fact, as discussed for
the two-dimensional case in Ref. [113], even in the three-dimensional case in
the zero-temperature limit the system can be thought of as a superfluid in
which the particles with momenta |k| 2 [k�, k+] contribute as normal state
particles.

We use the formula for N0 in Eq. (3.95) along with those obtained from
Eqs. (3.89), (3.90) and (3.91) in the T ! 0 limit to numerically calculate
the condensate fraction � as a function both of the dimensionless interaction
parameter y = (kF as)

�1 and of the polarization P = (N" + N#)/(N" � N#).
The results are reported in Fig. 3.2.
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Figure 3.2: The condensate fraction � = N0/2N , in the uniform case, as
a function of the inverse dimensionless interaction parameter y = (kF as)

�1

for different values of the polarization. In the inset � as a function of the
polarization P = (N" � N#)/(N" + N#) for y = 2.

In particular we observe that in the BCS regime a weak superfluidity is
destroyed even for small values of the polarization P . On the other hand the
behavior in the BEC limit is easily understood by observing than N" spin-up
particle and N# particle will form Npairs = 2min(N", N#) boson-like bound
pairs, while the remaining

Nnormal = N � Npairs = N" � N# = NP (3.97)

fermions will form a normal-state Fermi gas. The former contribute to
the condensate fraction, while the latter do not. Hence, by noting that
Nnormal is proportional to the polarization, and by also noting that Npairs =
2N � 2Nnormal, we expect to observe that in the deep BEC regime Npairs /
(1 � P ) / �, as verified in the inset of Fig. 3.2 for y = 2.



3.5 The unbalanced Fermi gas 45

3.5.3 Condensate fraction for a trapped system

A polarized Fermi gas is investigated experimentally by confining it in a
trapping potential; as opposed to the balanced case, in presence of polarization
a phase-separated regime shows up, rendering a realistic modeling of the
trapping compelling when dealing with unbalanced spin populations.

We assume that the unbalanced Fermi gas is confined by a potential V (r)
given by the superposition of an isotropic harmonic trap part in the radial
xy plane and a different harmonic confinement in the axial z direction:

V (r) =
m

2

�

!2
?⇢

2 + !2
zz

2
�

(3.98)

with ⇢2 = x2 + y2, as in the experimental configuration in Ref. [61], here !?
and !z are the transverse and axial trapping frequencies, respectively.

The external confinement is accounted for by defining a position-dependent
chemical potential for each spin species

µ� (r) = µ� � V (r) (3.99)

and treating the system as locally uniform,in local density approximation
(LDA). As a consequence the average chemical potential is also non uniform,
µ(r) = µ � V (r), while the unbalance chemical potential ⇣ remains uniform.

Consequently, the extended BCS equations have to be solved at each
point of the space for a spatially-dependent gap � (r) for a given scattering
length as. The zero-temperature free energy

F = ⌦(T = 0) +
X

�

µ�N� (3.100)

exhibits two minima, that is one for a nonvanishing order parameter, say
�0,BCS (r) (superfluid phase), and one for �0 = 0 (normal phase). In the
balanced case the minimum corresponding to the superfluid phase is always
a global minimum, in the present case, on the other hand, that is not the
case and the interplay between the two minima is the reason for the phase
separation.

By requiring that the superfluid and the normal states have the same free
energy, one determines the boundary between the superfluid and the normal
phase. It turns out that the superfluid phase always occupies the inner part
of the system, being eventually surrounded by a normal-state outer cloud. We
define RBCS as the radius, measured along the z axis, of the inner superfluid
component. In the present treatment the normal fermions are dealt with
approximately as two non interacting Fermi gases with local densities

n� (r) =

�

2m
~2 (µ (r) ± ⇣)

�

3
2

6⇡2
. (3.101)
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In describing the normal state mixture that surrounds the SF inner core, we
define the Thomas-Fermi radii for the two components11:

RTF
",# =

s

2 (µ ± ⇣)

m!2
z

, (3.102)

where the sign + (�) holds for the " (#) component, respectively, with the
majority spin-up species occupying the larger volume. Moving along the
z axis starting from the center of the trap, when z < RBCS the system is
in a superfluid state, while for RBCS < z < RTF

" the system consists of a
normal-state mixture. Provided that the polarization is smaller than a critical
value above which the superfluid is destroyed [114] and RBCS = 0, we always
have a phase-separated regime.

In Fig. 3.3, we report the condensate and the total density profiles as
functions of the axial coordinate z for three different scattering lengths. In
accordance with other theoretical works [96, 97] and with experimental data
[106] the superfluid phase ends abruptly at RBCS: the condensate fraction
thus jumps from a finite value to zero, as a manifestation of the phase
separation.

Our results for the condensate fraction as a function of the polarization are
plotted in Fig. 3.4, showing the comparison with the experimental findings
reported in Ref. [61]. We use the same trap parameters and the same total
number of fermions as reported in the Supplemental Material of Ref. [61], i.e.
!? = 2⇡ · 192 Hz, !z = 2⇡ · 23 Hz, and N = 2.3 · 107. Fig. 3.4 .

In our mean-field theory the condensate fraction is essentially linear as
a function of the polarization. Our results reasonably fit the experimental
data at low polarizations, up to P ⇠ 0.25. For higher polarizations the
closer P to the critical polarization the greater the discrepancy between our
predictions and the from-laboratory results, even taking into account that
the experimental data are affected by a 20% error on the number of particles.

For instance we observe that for y = �0.44, y = 0 and y = 0.11, the
critical polarization is at least 0.98. Experimental observations, on the
other hand, report that the critical polarization, while approaching 1 in the
strong coupling regime, should decrease for weaker interaction strengths.
In particular, a critical polarization Pc = 0.77 is observed at unitarity, see,
for example, [106]. This overestimation of the critical polarization by the
mean-field theory has been also reported by [115] and [84]. The reason
of this disagreement lies on the treatment of the non-superfluid phases as
non-interacting Fermi gases, neglecting the binding energy of the mixed state
[115]. We mention that the corrections to the normal phase, introduced, only

11Here we measure the radii along the z-axis. In principle, one could rescale the system
lengths along the radial direction by a factor of !

z

/!? so that the system can be regarded
as spherically symmetric.
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Figure 3.4: The condensate fraction � as a function of the polarization P
for different values of the dimensionless interaction parameter y = 1/(kF as)
(Black lines and points: y = 0.0, Grey lines and points: y = �0.44). The
points represent experimental data, as reported by [61]. We observe that
when modeling the harmonic trapping potential (dashed lines), our theoretical
predictions match experimental data only at low polarizations, due to an
incorrect estimate of the phase boundary. The error bars are calculated by
assuming that the error on the condensate fractions comes only from the 20%
reported error on the number of atoms [61].

for y = 0, in Ref. [115] allows to predict with great precision the critical
polarization.

In conclusion, in this Section we calculated the condensate fraction a a
uniform Fermi gas and by using a local-density approximation approach we
extended the result to model a trapped system. Our approach can reproduce
the phase separation, however the condensate fraction as a function of the
polarization agrees with experimental data only for low polarization. An
improved treatment would require a more realistic model of the normal-state
mixture surrounding the superfluid inner core.



4
Beyond mean field: collective excitations

in the BCS-BEC crossover

The mean-field description of the BCS-BEC crossover introduced in the
previous Chapter can provide a good agreement with experiments at zero
temperature. However, it completely neglects order parameter fluctuations
and excitations other than the single-particle modes, e.g. the sound mode
is completely neglected. In the present Chapter the Gaussian fluctuations
for the order parameter are taken into account, on top of the mean-field
approximation derived in the previous Chapter.

The field-theoretical approach in Ref. [67] is followed for the introduction
of the fluctuation formalism, and I am grateful to Prof. Jacques Tempere
for hosting me in his research group at University of Antwerp from March
2014 to June 2014. During this very fruitful period of collaboration I learned
many techniques, many of which related to the order parameter fluctuations,
which greatly helped me in the second part of my Ph.D.; moreover during
my stay in Belgium I met an original and friendly research group, whom I
thank for hosting me.

The main formalism is introduced in Section 4.1 and the fluctuation
partition function is derived, describing the contributions of bosonic collective
excitations to the thermodynamics of the system. Subsequently the following
topic are considered:

• The damping of collective modes at zero temperature in the BCS-BEC
crossover. In Section 4.2, at first a hydrodynamical theory is developed
for an improved treatment of the Beliaev decay and is subsequently
applied to the collective modes of Fermi gas across a broad Feshbach

49
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resonance. The analysis is based on results published in Ref. [2].

• The two-dimensional BCS-BEC crossover. The role of the fluctuations
is more relevant in lower dimensionality systems [116], for d  2, d
being the number of spatial dimensions, they completely destroy the
off-diagonal long-range order at finite temperature: in Section 4.3
we investigate the role of fluctuations in a 2D Fermi gas, deriving a
Gaussian-level equation of state and calculating the superfluid density,
the speed of the first and second sound and the Berezinskii-Kosterlitz-
Thouless critical temperature. The analysis is based on results published
in Ref. [3].

• Finally in the last Section, based on Ref. [4], an analytical result for
the scattering length of composite bosons in the deep-BEC limit is
derived. The fluctuations here modify the mean-field result ab = 2as to
ab = 0.6as, in very good agreement with Monte Carlo and experimental
data.

4.1 Collective excitations in the BCS-BEC crossover:
general theory

In the previous Chapter, before introducing the saddle-point approximation,
we derived an exact expression for the partition function for an attractive
Fermi gas at temperature T , within the grand canonical ensemble at chemical
potential µ. In particular by introducing the pairing field �, �̄ through the
Hubbard-Stratonovich transformation and integrating out the fermions we
obtained Eq. (3.52), which reads

Z =

Z

D�D�̄ exp

"

Tr ln
�

�G�1
�

+
X

q,m

|�(q, i⌦m)|2
g0

#

(4.1)

using the same notation as in Section 3.3, in particular g0 < 0 is the strength
of the attractive potential, �(q, i⌦m) is the Fourier transform of the pairing
field, ⌦m are bosonic Matsubara frequencies and finally �G�1 is the inverse
Green function. The pairing field can be expressed as the sum of a uniform
(in coordinate space) and constant (with respect to the imaginary time ⌧)
saddle point value �0 and the fluctuations around that value. In frequency-
momentum representation one gets

�(q, i⌦m) = �0 �(q)�m,0 + ⌘(q, i⌦m) (4.2)

and consequently the Green function �G�1 can be decomposed as

� G�1 = �G�1
sp + F , (4.3)
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with

⇥

� G�1
sp
⇤

k,k0 =

 

�i!n + k2

2m � µ ��0

��0 �i!n � k2

2m + µ

!

�(k � k

0)�n,n0 (4.4)

and
⇥

F
⇤

k,k0 =

✓

0 �⌘(k + k

0, i⌦n+n0)
�⌘(k + k

0, i⌦n+n0) 0

◆

. (4.5)

We stress that Eq. (4.1) is exact but cannot be treated analytically and must
be dealt with in an approximate way: in the mean field approximation the
full inverse Green function �G�1 is replaced by its mean-field approximation
�G�1

sp , the pairing field �, �̄ loses its dynamics and the functional integration
in Eq. (4.1) is no longer necessary.

The aim of the present Section is the derivation of a more accurate ap-
proach, taking into account the fluctuations contained in F in an approximate
way, rather than completely ignoring them as done when deriving the mean-
field theory. In particular the object ln

�

�G�1
�

appearing in Eq. (4.1) can
be rewritten as follows

ln
�

�G�1
�

= ln
�

�G�1
sp (1 � GspF)

�

= ln
�

�G�1
sp
�

+ ln (1 � GspF) , (4.6)

the first term ln
�

�G�1
sp
�

giving exactly the mean-field contribution. As the
saddle-point value �0 for the pairing field is calculated self-consistently by
minimizing the action, one expects the fluctuations ⌘, ⌘̄ around the saddle
point to be small, justifying an expansion of the second logarithm in the r.h.s.
of Eq. (4.6) in powers of F, as each non-zero entry of F is proportional to ⌘
or ⌘̄. Going on with the expansion one finds:

ln (1 � GspF) = �
1
X

n=1

(GspF)n

n
⇡ �GspF � 1

2
GspFGspF + O

�

⌘3
�

, (4.7)

having neglected terms above Gaussian order in the fluctuations. The Gaus-
sian approximation scheme can then be written in terms of the inverse Green
function as

� G�1 ! �G�1
sp � GspF � 1

2
GspFGspF . (4.8)

As a consequence the partition function for the system in Eq. (4.1) can be
written as Z = ZmfZfl, i.e the product of the “old” mean-field contribution Zmf
we previously found, see e.g. Eq. (3.60), times a new fluctuation contribution
[67]:

Zfl =

Z

D⌘D⌘̄ e�Sfl[⌘,⌘̄]

Sfl[⌘, ⌘̄] =
1

2
Tr(GspFGspF) �

X

q,m

|⌘(q, i⌦m)|2
g0

(4.9)
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with the same notation as in Section 3.3, in particular ⌦m are bosonic
Matsubara frequencies; the linear terms in ⌘, ⌘̄ vanished due to the saddle
point condition imposed for �0.

After a lengthy but straightforward calculation, involving the frequency-
momentum space representations of the G�1

sp and F matrices as introduced in
Eq. (3.55) and Eq. (3.56), the effective fluctuation action can be recast in
the following Gaussian form

Sfl =
1

2

X

q,m

�

⌘̄(q, i⌦m) ⌘(�q, �i⌦m)
�

M(q, i⌦m)

✓

⌘(q, i⌦m)
⌘̄(�q, �i⌦m)

◆

(4.10)

and the M matrix [67, 117, 118] is the inverse pair fluctuation propagator and
describes the dynamics of the bosonic collective excitations of the theory. Its
matrix elements are given, after carrying out a Matsubara summation, by
[67, 118]

M11(q, i⌦m) = � 1

g0
+
X

k

tanh(�E
k

/2)

2E
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+ E
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, (4.11)

and

M12(q, i⌦m) = ��2
0

X

k

tanh(�E
k

/2)

2E
k
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1

(i⌦m � E
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+ E
k+q

)(i⌦m � E
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+
1

(i⌦m + E
k

� E
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)(i⌦m + E
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+ E
k+q
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, (4.12)

with the same notation as in the previous Chapter, in particular ⇠
k

=

~2k2/2m � µ and E
k

=
q

⇠2
k

+�2
0. The remaining matrix elements are

defined by the relations

M11 (q, �i⌦m) = M22 (q, i⌦m) , (4.13)
M12 (q, �i⌦m) = M21 (q, i⌦m) . (4.14)

and when doing numerical calculations the unphysical parameter g0 can be
eliminated with the aid of Eq. (3.79) exactly as done in regularizing the gap
equation. By integrating out the ⌘(r, ⌧), ⌘̄(r, ⌧) fields we get the Gaussian
contribution to the finite-temperature grand potential [117, 118]

⌦fl =
1

2�

X

q,m

ln(det M(q, i⌦m)) (4.15)
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and the full Gaussian-level grand potential for the system is given by the
sum of the saddle-point (mean field) and fluctuations contribution, i.e.

⌦ = ⌦mf + ⌦fl . (4.16)

The gap equation remains unchanged as the saddle point is found at mean-
field level, the number equation, on the other hand, gets a new contribution
from ⌦fl, namely

N = �@⌦
@µ

= �@⌦mf

@µ
� @⌦fl

@µ
� @⌦fl

@�0

@�0

@µ
. (4.17)

The role of last term in the r.h.s. of Eq. (4.17) has been widely debated
[118]. If neglected the theory would reproduce the Nozières-Schmitt-Rink
(NSR) approach [44], while its inclusion, considering �0 as an independent
variable, leads to the present approach, known as Gaussian pair fluctuation
(GPF). It has been demonstrated [118] that in the two-dimensional case the
GPF approach makes the number equation convergent, on the other hand it
would be otherwise affected by divergencies if the NSR approach was chosen.
Moreover it has been argued [119] that even in the three-dimensional case
the last term in Eq. (4.17) is less relevant numerically but should not be
neglected.

4.2 Landau hydrodynamics and the Beliaev decay

In the present Section we introduce a hydrodynamic description of a superfluid,
subsequently applying it to the description of the collective excitations in a
Fermi gas.

Excitations in a superfluid can be described using the quantum hydro-
dynamics approach developed by Landau [120]; a clear advantage of this
formalism is the possibility of describing superfluids with non-contact inter-
actions and with a varying number of particles by introducing higher order
terms by means of a perturbative expansion around the mean field solution.

Collective excitations in a superfluid are destroyed either by Landau
damping, due to their interaction with the thermal cloud, or by Beliaev
damping, due to their decay into two, or more, lower energy excitations.
There is competition between these two damping modes: whereas Landau
damping is relevant at finite temperatures, with a vanishing cross section
as the temperature goes to zero, Beliaev damping remains the only allowed
decay mode at T = 0.

Therefore the Beliaev decay represents a test of Landau’s hydrodynamic
theory. First evidences of a phonon decay have been observed in superfluid
liquid 4He [121, 122]; more recently the Beliaev decay has been observed in
a trapped Bose-Einstein condensate (BEC) of rubidium atoms [123, 124];
an analogous process has been proposed in order to explain the absence
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of equilibrium in one dimensional interacting bosons, see Ref. [125] and
references therein.

In the first part of the present Section we focus on Beliaev decay and
derive an improved version of the classical result [120, 126, 127] based on
the observation that while the original derivation requires a nonlinear term
in the spectrum, nonetheless it treats the kinematics in a low-momentum
approximation as if the spectrum was effectively linear. We show that this
treatment can be extended and that, in particular, the inclusion of a gradient
term in the Hamiltonian yields a Bogoliubov-like spectrum for the bosonic
excitations [128]. We calculate the decay rate for the Beliaev damping and
show that even for low momenta and small nonlinearities a realistic spectrum
can give appreciable differences with respect to the linear approximation of
the standard result.

The motivation for this work is the application to an attractive Fermi
gas in the second part of this Section: as the attractive interaction between
atoms is tuned, the gas at T = 0 goes with continuity from a Bardeen-Cooper-
Schrieffer (BCS) weakly-interacting regime, to a strongly interacting gas of
bosonic dimers. This scenario can be described [36, 71, 76] by introducing
the complex Cooper pairing field, which will acquire a non-zero expectation
value below the critical temperature. As the phase of the order parameter is
macroscopically locked below the critical temperature [72, 129], spontaneously
breaking the U(1) symmetry, its fluctuations correspond to the gapless mode
predicted by the Goldstone theorem. These collective modes turn out to
be fundamental in quantitatively describing the dynamics of an ultracold
Fermi gas [130]; after briefly analyzing the Goldstone mode, we show that
its linewidth gets substantially enhanced due to the Beliaev decay process.
We also show that our improved description of the decay yields substantial
deviations from the standard approximation.

4.2.1 Beliaev damping: an improved treatment

We briefly introduce Landau’s quantum hydrodynamics [120, 127], a semi-
phenomenological description of a superfluid which can be, however, rigorously
justified and derived from the microscopical theory as discussed in Ref. [131].
An exact expression for the internal energy of a classical liquid in a sound
wave is E =

R

d3x(1
2⇢v

2 + ⇢e), where v is the local velocity of the fluid, and
⇢ the local density. Here e represents the internal energy of the fluid for unit
mass; Landau’s original treatment [120, 126] assumes it to be dependent only
on the density ⇢, and as a consequence the dispersion relation for the sound
waves is linear. On the other hand by adding a gradient term as

e(⇢) ! e(⇢, r⇢) = e(⇢) + �
~2

8m2

(r⇢)2
⇢2

(4.18)
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higher order terms appear in the dispersion relation as shown in [128], m
being the mass of a fluid particle, � being a dimensionless coefficient which
can be fixed a posteriori. Within the quantum hydrodynamics framework
the velocity and density fields of a fluid are promoted to quantum operators,
so that the Hamiltonian for a quantum fluid is:

Ĥ =

Z

d3x



1

2
v̂ · ⇢̂v̂ + ⇢̂e(⇢̂, r⇢̂)

�

(4.19)

where the term involving the velocity operator has been opportunely sym-
metrized to be Hermitean. We rewrite the velocity in terms of a velocity
potential v̂ = r�̂ and the density by separating the equilibrium value ⇢ from
its fluctuations as ⇢̂ = ⇢+ ⇢̂0. The new operators can be written expanding
in plane waves:

⇢̂0 =
1p
2L3

X

|k| 6=0

A
k

⇣

b̂
k

eik·r + b̂†
k

e�ik·r
⌘

(4.20)

�̂ =
1p
2L3

X

|k| 6=0

i~B
k

⇣

b
k

eik·r � b†
k

e�ik·r
⌘

(4.21)

with L3 the volume of the system; the b
q

(b†
q

) operators annihilate (create) a
bosonic excitation over the fundamental state of the liquid |⌦i, and obey the
canonical commutation relationships.

We impose that ⇢̂0 and �̂ should be canonically conjugate variables

[�̂(r), ⇢̂0(r0)] = �i~�(r � r

0) (4.22)

this constraint being fulfilled by B
k

= A�1
k

. The exact treatment of a quantum
liquid in Eq. (4.19) can be expanded in powers of the field operators: the first
to give a contribution is the second order, here the theory can be diagonalized
to a theory of non-interacting bosons, i.e. Ĥ(2) =

P

k

~!
k

b̂†
k

b̂
k

, and the
requirement for Ĥ(2) to be diagonal fully fixes A

k

as:

A
k

=

r

~k⇢
u

✓

1 + �
~2

8m2

k2

c2

◆� 1
4

(4.23)

and the dispersion for the bosons has the usual Bogoliubov structure

!
k

= u~k
r

1 + �
~2

4m2

k2

u2
(4.24)

u being the sound velocity of the sound waves in the quantum liquid. Clearly
the original linear theory can be recovered by setting � = 0 and removing the
gradient terms. The present formalism, as opposed to the Gross-Pitaevskii
equation [132, 133], allows for the decay of a collective excitation in a
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superfluid, in particular extending the treatment to the third order one
immediately sees that the decay of one excitation into two is allowed: this
process is the Beliaev decay [126] described above. The third order term of
the Hamiltonian is:

Ĥ(3) =

Z

d3r
h

(r�̂)
⇢̂0

2
(r�̂) +

1

6

✓

d

d⇢

u2

⇢

◆

⇢̂03 � �
~2

8m2
(r⇢̂0)2 ⇢̂

0

⇢2

i

. (4.25)

Before going on with the treatment of the Beliaev decay we briefly comment
on the scope of application of the present theory; as already mentioned it
can be shown [131] that the hydrodynamic Hamiltonian in Eq. (4.19) can be
rigorously derived from a description of the Bose gas; this procedure involves
integrating out the “fast fields”, effectively defining a momentum scale kc

below which the perturbative expansion should be valid. Following Ref. [131]
one can estimate this quantity for a weakly interacting Bose gas; here kc is
the momentum marking the separation between a linear spectrum and the
free-particle quadratic spectrum, and from Eq. (4.24) one gets

~kc ' 2mup
�

(4.26)

this condition marking, as argued in Ref. [131], the upper limit for the validity
of the perturbation theory.

In order to study the Beliaev decay we calculate the matrix element:

H(3)
if = hi|H(3)|fi (4.27)

between the following initial and final states:

|ii = b̂†
p

|⌦i (4.28)

|fi = b̂†
q1

b̂†
q2

|⌦i (4.29)

The matrix element in Eq. (4.27), when Eqs. (4.20) and (4.21) are plugged
in, is essentially the expectation value over |⌦i of a number of terms composed
of six creation/annihilation operators; after a lengthy but straightforward
calculation reported in Appendix B, one obtains

H(3)
if =

(2⇡~)3

(2V )
3
2

·�(3)(p�q1�q2)·3
r

u

⇢
pq1|p � q1|

✓

1 + �✓
⇢2

u2

d

d⇢

u2

⇢

◆

(4.30)

where ✓ is the angle between p and q1, the other angles being fixed by the
condition q2 = p � q1 enforced by the � function. We also defined:

��1
✓ =

p � q1

|p � q1|
(1 + cos(✓)) + cos(✓) . (4.31)

In deriving Eq. (4.30) we neglected all the terms containing �; it can be
checked that they give / p7 and / p9 contributions to the decay width,
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whereas the leading contribution will turn out to be / p5. However the
nonlinear dispersion relation is relevant when discussing the kinematics: the
differential decay rate is calculated using Fermi’s golden rule1:

dw =
2⇡

~ |H(3)
if |2�(Ef � Ei)

V 2

(2⇡~)6
d3q1d

3q2 (4.32)

and Ef �Ei = ~!
p

�~!
q1 �!

q2 , !k

is the spectrum as derived in Eq. (4.24).
The integration over d3q2 is performed using the momentum conservation
constraint appearing in |H(3)

if |, the integration over the angular part of d3q1

removes the � function related to energy conservation, fixing at the same
time the decay angle ✓0, and finally the radial integration remains explicit.
The final result for the decay rate is:

w =
9

32⇡⇢~4

Z p

0
q2|p � q|20

⇣

1 + �✓0
⇢
u2

d
d⇢

u2

⇢

⌘2

|f 0(cos ✓0, p, q)| dq (4.33)

where |p � q|20 = |p2 + q2 � 2pq cos ✓0| for the sake of shortness,

f(cos ✓, p, q) =
1

u

|p � q|
pq

�

~!p � ~!q � ~!|p�q|
�

(4.34)

is essentially the energy conservation constraint, f 0 is its derivative with
respect to the first argument and ✓0 = ✓0(p, q) is the only zero of f in the
interval [�⇡,⇡], and represents the allowed decay angle given the incoming
and outgoing momenta.

Equation (4.33) is the main result of the present Subsection, and will be
employed in the next Subsection in studying the Beliaev decay of collective
excitation in an attractive Fermi gas. We stress that w in Eq. (4.33) is
a function of just ⇢, u and of the incoming momentum p; moreover the
exact form of the spectrum, including the � coefficient, contributes indirectly
to the final result, by modifying f and, consequently, ✓0. We also note
the kinematics constraints can be satisfied and the decay is allowed only if
the aforementioned zero of f exists, an equivalent condition being that the
spectrum should grow faster than linearly.

Let us make the physical meaning of the last remark clearer, expanding
the spectrum in Eq. (4.24) in powers of k:

~!
k

= uk + ↵k3 + O
�

k4
�

(4.35)

where ↵ has the same sign as �. The energy conservation constraint in the
low momentum limit reads 1 � cos ✓ = 3↵(p � q)2 and can be fulfilled only

1The square of the � function imposing momentum conservation is to be interpreted as
in [120]:

h
�(3) (p � q1 � q2)

i2
= V

(2⇡~)3 �
(3) (p � q1 � q2)



58 Beyond mean field: collective excitations in the BCS-BEC crossover

if ↵ � 0, i.e. only if the spectrum grows linearly or more than linearly; for
↵ < 0 no decay is allowed.

We now focus on the strictly linear case ↵ = 0. Energy and momentum
can be conserved only if ✓0 = 0, i.e. the momenta of the decaying excitation
and those of the decay products are parallel. Even for very small values of ↵
the decay kinematics deviates significantly from the aforementioned linear
situation as ✓0 increases.

We stress that, even if the standard treatment of Beliaev decay [120, 126]
correctly identifies ↵ � 0 as a necessary condition for the decay to happen,
then ↵ = 0 in the kinematics is a critical assumption; on the other hand the
present treatment by including the gradient term in Eq. (4.19) allows for a
realistic, Bogoliubov-like spectrum.

Let us derive the standard result from the more general Eq. (4.33): having
set � = 0 for a linear spectrum ~!

k

= u|k| one has that ✓0 = 0, f 0 = 1
and also � = 1

3 . Moreover noting that
R p
0 q2|p � q|2dq = p5/30, we recover

Beliaev’s original approximation [120, 126], which we report here for the sake
of completeness:

w = p5 3

320⇡⇢~4

✓

1 +
⇢2

3u2

d

d⇢

u2

⇢

◆2

(4.36)

To conclude we note that for a weakly-interacting Bose gas Eq. (4.36)
further simplifies, because in this case

⇢2

u2

d

d⇢

u2

⇢
= 0 . (4.37)

Alternatively the weakly-interacting Bose gas regime can also be investigated,
as done in Ref. [124], starting from the atomic Hamiltonian, introducing
the Bogoliubov approximation and isolating the relevant decay vertices. The
present hydrodynamic approach is different because it can be derived, as
already mentioned, by separating the fast and slow components of the fields,
introducing a momentum scale kc, whereas the Bogoliubov approximation
merely separates the zero-momentum contribution. We expect the two
approaches to yield the same results for k . kc, as we verified. The hy-
drodynamic approach, however, is better suited for analyzing the collective
excitations of an attractive Fermi gas.

4.2.2 Beliaev damping for an attractive Fermi gas

We now consider a three-dimensional, uniform dilute gas of interacting Fermi
atoms; the atoms are neutral and have two spin species. The analysis of this
system across the BCS-BEC crossover has been the subject of Chapter 3.
In particular using the path integral formalism [36, 71, 76] the fermions are
represented by the complex Grassman fields  �(r, ⌧),  ̄�(r, ⌧), with the spin
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index � =", # and the partition function for the system at temperature T ,
with chemical potential µ is:

Z =

Z

D �D ̄� exp

✓

�1

~ S

◆

, (4.38)

with the following action and (Euclidean) Lagrangian density:

S =

Z ~�

0
d⌧

Z

L3
d3r L (4.39)

L =
X

�

 ̄�



~@⌧ � ~2

2m
r2 � µ

�

 � + g0  ̄"  ̄#  #  " (4.40)

as usual � = 1/(kBT ), kB is the Boltzmann constant, L3 is the volume of the
system and g0 < 0 is the strength of the contact interaction between atoms.

We follow the usual treatment, decoupling the quartic interaction by means
of a Hubbard-Stratonovich transformation and introducing the pairing field �.
As analyzed in detail in Chapter 3 the pairing field can be decomposed as the
sum of a saddle-point contribution �0 and a fluctuation field ⌘. Neglecting
the fluctuations and integrating out the fermionic field  ,  ̄ one gets the
following mean-field zero-temperature thermodynamic grand-potential

⌦mf = �
X

k

(E
k

� ⇠
k

) � L3�
2
0

g0
. (4.41)

where ⇠
k

= ~2k2/(2m)�µ and E
k

=
q

⇠2
k

+�2
0 is the spectrum of elementary

single-particle fermionic excitations. The number and the gap equations for
the system can be readily obtained from the mean-field grand potential ⌦mf,
allowing one to determine the pairing gap �0 and the mean-field value of the
chemical potential µ as a function of the crossover, namely as a function of
y = (kF as)�1, the reader may refer to Chapter 3 for a detailed analysis of
the mean-field treatment.

Let us now analyze the fluctuations contribution to the present theory, as
derived in Section 4.1: reinstating the fluctuations fields ⌘(r, ⌧), ⌘̄(r, ⌧) up to
the quadratic (Gaussian) order [117, 134] the partition function reads:

Z = Zmf

Z

D⌘D⌘̄ exp

✓

�Sfl[⌘, ⌘̄]

~

◆

, (4.42)

having defined the Gaussian action:

Sfl[⌘, ⌘̄] =
1

2

X

q

(⌘̄(q), ⌘(�q)) M(q)

✓

⌘(q)
⌘̄(�q)

◆

(4.43)
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with q = (q, i⌦m), and ⌦m = 2⇡n/� are the Bose Matsubara frequencies. At
T = 0 the inverse propagator for the pair fluctuations M has the following
matrix elements [117, 118]:

M11(q) =
1

g0
+
X

k

✓

u2u02

i⌦n � E � E0 � v2v02

i⌦n + E + E0

◆

(4.44)

M12(q) =
X

k

uvu0v0
✓

1

i⌦n + E + E0 � 1

i⌦n � E � E0

◆

(4.45)

where u = u
k

=
q

1
2(1 + ⇠k

Ek
), v = v

k

=
q

1 � u2
k

, u0 = u
k+q

, v0 = v
k+q

,
E = E

k

, E0 = E
k+q

. As in the finite-temperature case the remaining matrix
elements are defined by the relations: M22(q) = M11(�q), M21(q) = M12(q).

A completely equivalent description can be given, after a unitary transfor-
mation, in terms of the (linearized) phase and amplitude of the fluctuation
field, which can be decomposed as ⌘(q, i⌦m) = (�(q, i⌦m) + i✓(q, i⌦m)) /

p
2.

The Gaussian level action now reads:

Sfl =
1

2

X

q

�

�⇤ ✓⇤
�

✓

ME
11 + M12 iMO

11

�iMO
11 ME

11 � M12

◆✓

�
✓

◆

(4.46)

in terms of the even/odd components in i!n of the M matrix elements [135,
136], i.e. ME/O

ab (q, i⌦m) = 1
2(Mab(q, i⌦m) ± Mab(q, �i⌦m)). As soon as the

Cooper pairing field �(r, ⌧) acquires a non-zero expectation value, i.e. under
Tc, as a consequence of the U(1) symmetry breaking one expects to observe the
gapless Goldstone mode [76]. The phase-amplitude representation introduced
in Eq. (4.46) allows for an easy verification of this statement, in fact it can
be shown that in the low momentum, T = 0 limit the phase and amplitude
fluctuations are decoupled [136]: the off-diagonal entries in Eq. (4.46) go to
zero, and the phase (Goldstone) mode is gapless, while the amplitude (Higgs)
mode exhibits a mass gap. From now on up to the end of the present Section
we will study the system at T = 0. Focusing on the former mode, we observe
that, indeed, by solving for ! the equation

det M(q, i⌦m ! !) = 0 (4.47)

we obtain the spectrum of the bosonic collective mode, showing a gapless
branch. Notably in the BEC regime y & 1, and across the whole crossover
for low enough momenta, this mode takes (within very good approximation)
the familiar Bogoliubov-like form

~!
q

=
q

✏
q

(�✏
q

+ 2mc2
s) , (4.48)

with ✏
k

= ~2k2/(2m); the sound speed cs, along with the parameter �,
depends on y = 1/(kF as). We use this spectrum in the deep BEC limit, while
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in the intermediate regime near unitarity we solve numerically Eq. (4.47) to
get the “exact” spectrum within the present Gaussian approximation scheme.
When comparing the “exact” spectrum so obtained with the Bogoliubov
approximate form, one also has to remember that a natural momentum
scale can be defined by studying whether and when the dispersion enters the
two-particle continuum reaching the threshold energy [137]:

Eth(q) = min
k

(E
k

+ E
k+q

) (4.49)

above which a Cooper pair breaks down in two fermions. As far as the
present work is concerned it is important noting that !

q

grows more (less)
than linearly if � > 0 (� < 0), moreover the parameter � can be calculated
easily either from a numerical solution of Eq. (4.47) or using the techniques
in Ref. [138]. It turns out that � is a monotonically increasing function of
y = 1/(kF as). In particular � takes negative values in the deep BCS regime
and changes its sign for y = yc ⇡ �0.14; referring to the previous Subsection
we can then conclude that no Beliaev decay will happen for y < yc.

We now want to adapt Eq. (4.33) to the present theory. We start by
noticing that if the spectrum has the form in Eq. (4.48), then the decay angle
✓0 defined in the previous Subsection has an analytic expression:

cos ✓0(p, q) =
m2c2

s

�pq~2
+

q

2p
+

p

2q
+

�

q

m2c4
s + 2mc2

s� (✏p + ✏q) � 2�~!
p

~!
q

+ �2
�

✏2p + ✏2q
�

2�pq ~2

2m

. (4.50)

We note that for the special case � = 1, 2mc2
s = 2 Eq. (4.50) coincides with

the result in Ref. [124].
Finally the more complicated expression inside the parenthesis in Eq.

(4.33) can be expressed using the techniques devised in Ref. [139] as:

⇢2

u2

d

d⇢

u2

⇢
= �30✏(y) � 8y✏0(y) � 3y2✏00(y) + y3✏000(y)

30✏(y) � 18y✏0(y) + 3y2✏00(y)
(4.51)

as a function of ✏(y) = 5
3✏

�1
F E , where E is the bulk energy per particle of an

interacting Fermi gas; when calculating our final results we compared ✏(y)
as fitted in [139] from experimental data with its mean field counterpart,
observing no appreciable differences as far as the quantity in Eq. (4.51) is
concerned. Consistently with the result found in Eq. (4.37) for the weakly-
interacting Bose gas, the quantity in Eq. (4.51) tends to zero in the deep
BEC limit.

We calculate the Beliaev decay width for the Goldstone collective mode
of an attractive Fermi gas; as previously noted there is no decay in the BCS
regime up to y = yc ⇡ �0.14, as the spectrum as a function of |q| grows less
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than linearly. For higher values of y we can associate an imaginary part to
the Goldstone mode spectrum, as

Im ~!
p

= �~w
2

(4.52)

using w from Eq. (4.33). In Fig. 4.1 we report the real spectra !
p

, obtained
from Eq. (4.47), for three values of y = 1/(kF as), from unitarity to the BEC
regime (y = 0, y = 0.5, y = 1), along with their imaginary part due to the
Beliaev decay.

A collective excitation in a superfluid Fermi gas cannot have arbitrarily
high energy, as it will be damped either by the dissociation mechanism at
the threshold energy Eth, decaying into two fermions, or by the Beliaev
mechanism, decaying into two lower frequency collective excitations. Either
way a natural energy cutoff can be associated to a bosonic excitation.

Referring to the left pane of Fig. (4.1) we start at unitarity (y = 0) where
the Beliaev decay width is quite narrow: here a collective excitation will
mainly decay by hitting the threshold energy Eth and breaking down into two
fermions [137]. On the other hand, approaching the BEC regime (y = 0.5,
y = 1.0) the Beliaev decay width gets larger before the collective spectrum
touches Eth: here the preferred decay mode for a collective excitation will be
decaying into two lower frequency collective excitations. This trend, i.e. the
progressively bigger importance of the Beliaev mechanism approaching the
BEC regime, can be observed by comparing the three panes in Fig. (4.1).

In order to define an energy cutoff due to the Beliaev mechanism, we can
match the real and the imaginary part of !

p

similarly identifying a scale
beyond which a collective excitation is no longer well-defined due to the
Beliaev decay. This remark is made clear by looking at the pair fluctuation
spectral function

A⌘⌘(k,!) = �2 Im G⌘⌘(k,! + �
k

) (4.53)

plotted in Fig. (4.2). As noted in [118], it can be interpreted as the contri-
bution to the density from the fluctuations at a given wave number q and a
given momentum !. In the previous equation ! is assumed to be real and
�
k

= �~w
2 is the imaginary component of the spectrum due to the Beliaev

decay, G⌘⌘ is the Green’s function obtained by inverting the matrix in Eq.
(4.43) and taking the (1, 1) entry. We observe that for low momenta most of
the spectral weight is peaked around the dispersion relation, which is marked
by a dashed line, assuming the usual Lorentzian structure. However, as the
spectrum continues after p ' kF , for high momenta the line broadening effect
due to the Beliaev decay effectively destroys the collective excitation, and the
spectral weight is distributed over a large region. The border between these
two regimes can also be approximately found by imposing the aforementioned
condition Re!

k

= Im!
k

, which can be easily read from Fig. (4.2): when the



4.2 Landau hydrodynamics and the Beliaev decay 63

real part of the dispersion is bigger than the imaginary part, the expression
in Eq. (4.53) has a narrow peak; as the imaginary part of the spectrum gets
bigger the Lorentzian structure of the peak is lost and the excitation is no
longer well defined.

We can conclude that, as we go from the BCS to the BEC regime, the
dissociation mechanism at Eth gets less and less relevant, as the collective
mode spectrum gets further away from Eth; at the same time, the Beliaev
decay channel opens at y = yc and gets progressively more relevant. Finally
in Fig. (4.3) we compare the decay width, as predicted by the present
theory, with the original linear approximation [120, 126]: even for relatively
small momenta our treatment shows relevant differences with respect to the
standard treatment. The differences get larger in the BEC regime, consistently
with the fact that the nonlinearity term � in the spectrum is bigger; however
we stress that even for nearly linear spectra, see the cases y = 0 and y = 0.5
in Fig. (4.1), the correction due to the present treatment can amount up to
25% for p

k
F

' 1.
In conclusion we briefly comment on the scope of applicability of the

present theory to the fermionic case; adapting Eq. (4.26) one finds

kc ' 2mcsp
�

(4.54)

and we do not expect the theory to be applicable above this momentum
threshold; a direct calculation shows that starting at unitarity, up to the
moderate BEC regime we considered in Fig. (4.1) and Fig. (4.2), kc assumes
respectively the following values: kc = 3.06kF , kc = 1.72kF , kc = 1.31kF .
The evolution of kc/kF in the unitary to moderate BEC regime we analyze
in the present work is plotted in the inset of Fig. 4.3, in the deep BEC limit
we get [140]

kc ' 1

2

�2
0

|µ| . (4.55)

We notice that for the cases we considered, the momentum scale kc marking
the breakdown of the perturbation theory is higher or equal to the scale at
which a collective excitation is no longer well defined due to a high decay
rate; we conclude then that the present treatment is consistent.
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Figure 4.2: The pair fluctuation spectral function A⌘⌘(k,!) for y =
(kF as)�1 = 1, the dashed red line shows the corresponding spectrum, the
dashed blue lines correspond to the imaginary part of the spectrum, like in
Fig. 4.1. For p

k
f

& 1 the line broadening due to the Beliaev decay effectively
destroys a collective excitation, this is also approximately the scale marking
the end of the validity of the perturbative approach. For comparison here
Eth > 3✏F . In this figure ~ = 1.
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Figure 4.3: The Beliaev decay width calculated from Eq. (4.33) divided
by the original Beliaev result (linear approximation), for different values of
y = 1/(kF as). The inset shows the evolution of kc/kF as defined in Eq. (4.54)
in the unitary to moderate BEC regime we investigate.
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4.3 The two-dimensional Fermi gas: first sound, sec-
ond sound and BKT critical temperature

Quantum fluctuations play a crucial role in low-dimensional systems [116]:
the finite temperature properties of a two-dimensional Fermi gas across the
BCS-BEC crossover are substantially different from its three-dimensional
counterpart. In particular, in accordance with the Mermin-Wagner-Hohenberg
theorem [141–143] for d  2 there can not be a finite condensate density at
finite temperature, as the fluctuations destroy the off-diagonal long-range
order; nonetheless two-dimensional systems can exhibit algebraic off-diagonal
long-range order, allowing for the existance of a quasi-condensante up to
a certain critical temperature, due to the Berezinskii-Kosterlitz-Thouless
(BKT) mechanism [144, 145].

Along with the appearance of algebraic long-range order, as observed
for the first time in superfluid 4He, then in an ultracold Bose gas [146], in
an exciton-polariton gas [147] and very recently in an ultracold Fermi gas
[148], the other fundamental signature of the BKT mechanism at work is the
universal jump in the superfluid density [149], going discontinuously from a
finite value to zero at the critical temperature, as observed in thin 4He films
[150]. This scenario suggests that in a two-dimensional system the role of
quantum fluctuations should be crucial in describing several aspects of the
system [151], as opposed to the 3D case for which one could expect from a
mean-field theory at least qualitative agreement. In fact it has been observed
that Gaussian fluctuations strongly modify both the chemical potential and
the pairing parameter, particularly in the intermediate and strong coupling
regions [152]; it has also been shown that the correct composite-boson limit
is recovered by introducing Gaussian fluctuations [153].

The determination of a full Gaussian-level equation of state needs, however,
a proper regularization scheme to remove divergences. In the present work
we use convergence factors in the pair-fluctuation propagator [117, 152] to
numerically calculate the T = 0 state equation for a system of interacting
fermions across the BCS-BEC crossover.

We investigate beyond-mean-field effects for a two-dimensional Fermi gas
at finite temperature: we calculate the first and second sound velocities, as a
function of the temperature and of the binding energy, and then calculate
the BKT critical temperature from the Kosterlitz-Nelson condition [149]. In
particular this last theoretical prediction is compared with recently obtained
experimental results [148], showing excellent agreement with experimental
data in the intermediate and BEC regimes.

4.3.1 Theoretical framework

The treatment of a two-dimensional (2D) Fermi gas presents some differences
with respect to the three-dimensional (3D) treatment previously analyzed.
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For this reason we briefly retrace the derivation of the mean-field and of
the fluctuations theory, emphasizing the differences and the new features.
The partition function of a system of ultracold, dilute, interacting spin 1/2

fermions contained in a two-dimensional volume L2, at temperature T , with
chemical potential µ can be described within the path-integral formalism [71,
76] analogously as the three-dimensional case analyzed in Chapter 3:

Z =

Z

D �D ̄�e�
1
~
R ~�

0 d⌧
R

L

2 d2rL (4.56)

with the following (Euclidean) Lagrangian density

L =  ̄�



~@⌧ � ~2

2m
r2 � µ

�

 � + g0  ̄"  ̄#  #  " , (4.57)

where  �(r, ⌧) and  ̄�(r, ⌧) are complex Grassmann fields, � =", # is the spin
index, m is the mass of a fermion, having defined � = (kBT )�1, kB being
the Boltzmann constant. The strength of the attractive s-wave potential
is g0 < 0. In two-dimensions, as opposed to three dimensional case, g0 be
implicitely related to the bound state energy ✏b [81, 154] by the following
bound state equation:

� 1

g0
=

1

2L2

X

k

1

✏
k

+ 1
2✏b

. (4.58)

with ✏
k

= ~2k2/(2m). It should also be stressed that in 2D, as opposed to
the three-dimensional case, a bound state exists even for arbitrarily weak
interactions, making ✏b a good variable to describe the whole BCS-BEC
crossover. The quartic interaction can be decoupled by using a Hubbard-
Stratonovich transformation, introducing in the process the new auxiliary
pairing fields �, �̄ [71, 76], in completely analogy with the three-dimensional
case already discussed. The newly introduced pairing field can be split into
a uniform, constant saddle-point value �0 and the fluctuations around this
value as follows:

�(r, ⌧) = �0 + ⌘(r, ⌧) , (4.59)
and neglecting the fluctuation fields ⌘, ⌘̄ gives us a simple mean-field theory,
which is generally unreliable in the present case, due to the fundamental
role of fluctuations in two dimensions, but still constitutes the starting point
for more refined approaches. The functional integral defining the mean-field
partition function can be carried out exactly, yielding

Zmf = exp (�� ⌦mf) = exp

✓

Tr
⇥

ln (�G�1
sp )
⇤

+ �L2�
2
0

g0

◆

, (4.60)

the trace being taken in coordinate space and in the Nambu-Gor’kov space,
with the inverse Green function:

� G�1
sp =
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!

(4.61)
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and the single-particle excitation spectrum is found solving for the poles of
the Nambu-Gor’kov Green’s function Gsp in momentum space [71]:

E
k

=
q

(✏
k

� µ)2 +�2
0 . (4.62)

As opposed to the three-dimensional case, in two dimensions for T = 0 the
k-integration for ⌦mf can be carried out analytically in the 2D case, one gets:

⌦mf(µ,�0) = �mL2
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2
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0 ��2
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.

(4.63)
From the grand potential we impose the saddle-point condition for �0, i.e.
(@⌦mf/@�0)µ,V = 0, obtaining the gap equation:

�0 =

r

2✏b(µ +
1

2
✏b) , (4.64)

plugging this result back into the mean-field grand potential we get the
mean-field equation of state:

⌦mf(µ) = �mL2

2⇡~2
(µ +

1

2
✏b)

2 . (4.65)

Restoring the fluctuation fields ⌘, ⌘̄ at a Gaussian level, the partition function
reads [117]:

Z = Zmf

Z
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where
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having introduced the Fourier-transformed version of the fluctuation fields,
with Q = (q, i⌦m), ⌦m = 2⇡m/� being the Bose Matsubara frequencies. The
fluctuation fields ⌘, ⌘̄ can be formally integrated, allowing us to write down
the Gaussian-level contribution to the grand potential:

⌦fl(µ,�0) =
1

2�

X

Q

ln det(M(Q)) . (4.68)

We do not report here the full expression for the inverse pair fluctuation
propagator matrix M, it can be found for instance in [117, 118]; by imposing the
condition det(M) = 0 at T = 0 one can find the collective excitation spectrum,
which will have, in the low-momentum limit, the following expression

~!
q

=
q

✏q (�✏q + 2mc2
s) (4.69)
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� and cs being a function of the crossover. Like in the mean-field case we
can insert Eq. (4.64) into Eq. (4.68) getting ⌦fl(µ).

The grand-potential in Eq. (4.68) cannot be evaluated as is, being affected
by divergencies related to the modeling of the interaction using a contact
pseudo-potential rather than a realistic one. Many different regularization
approaches can be used, like the dimensional regularization in 2D in the
BEC limit [153], the counterterms regularization in 3D in the BEC limit2 or
regularization with convergence factors [117, 152]. The first two are more
suited to obtain analytical results, particularly in the BEC limit, while the
last method has been shown to be suited to obtain numerical results across the
whole crossover [152]. Wanting to investigate numerically the whole crossover,
our grand potential is regularized by introducing convergence factors [117,
152]:

⌦fl(µ,�0) =
1

2�

X

Q

ln



M11(Q)

M22(Q)
det(M(Q))

�

ei⌦
m

0+
. (4.70)

Inserting the gap equation as before we get the Gaussian contribution ⌦fl(µ)
to the equation of state. From the equation of state then one gets µ as a
function of the crossover. The pairing gap �0 is found by inserting µ into
Eq. (4.64).

The chemical potential µ and the pairing gap �0 at T = 0 are plotted in
Fig. 4.5 as a function of the scaled binding energy ✏b/✏F and are compared
with their mean-field counterparts. Clearly in the strongly-interacting regime
the validity of the mean-field approximation is limited and the contribution
from the fluctuations provides a substantial modification.

4.3.2 First and second sound

The first sound velocity cs is calculated from the regularized grand potential
in Eq. (4.70), by using the zero-temperature thermodynamic relation [155]:

cs =

r

n

m
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@n
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s

� n

m

✓

1

L2

@2⌦(µ)

@µ2

◆�1

. (4.71)

Using the mean-field equation of state to calculate the chemical potential,
one would find cs(µmf) = vF /

p
2 across the whole BCS-BEC crossover, vF

being the Fermi velocity [81, 138]. Our equation of state with Gaussian
fluctuations yields, as expected, a critically different cs: it slowly tends to
the aforementioned value in the BCS limit, showing, on the other hand, a
remarkable difference in the intermediate and BEC regimes, tending to the
composite boson limit derived in Ref. [153]. We plot this result in Fig. 4.4.
By adapting the thermodynamic approach of Ref. [156] we verified that the
T -dependence of cs in the superfluid phase is very weak, see the inset of Fig.
4.4.

2See Ref. [4] or Section 4.4.



4.3 The two-dimensional Fermi gas 71

Figure 4.4: The first sound velocity at T = 0, calculated using µ and �0

from the Gaussian-level equation of state (black solid line), and using their
mean-field counterparts (blue dashed line), which give a constant value
cs/vF = 1/

p
2. In the strong coupling regime a full Gaussian-level equation

of state is needed to correctly describe thermodynamic quantities, there our
prediction correctly tends to the composite boson limit (red dotted line).
Inset: temperature dependence for log(✏b/✏F ) = �10, �5, 0, 5, 10 (from top
to bottom).

Figure 4.5: The chemical potential µ (red lines) and the pairing gap �0

(black lines) in units of the Fermi energy, as calculated from the mean-field
equation of state (dashed lines) and from the Gaussian-level equation of state
(solid lines), as a function of the scaled binding energy ✏b/✏F .

Beside the first sound, propagating through density waves, a superfluid
can also sustain the second sound, a purely quantum-mechanical phenomenon
propagating through a temperature wave [157]. In order to calculate the
second sound velocity we follow the treatment in [156] starting from the free
energy of the system, substantially treating it as a gas of independent single
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Figure 4.6: The second sound velocity, as a function of the temperature T/TF ,
for varying values of ✏b/✏F . The characteristic structure with a minimum
followed by a linear increase evolves into a constant second sound velocity
approaching the BEC regime.
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particle and collective excitations, neglecting hybridization through Landau
damping; this approach will be justified shortly when discussing the BKT
critical temperature. We find the fermion single particle contribution to the
free energy:

Fsp = � 2

�

X

k

ln
h

1 + e��Ek

i

(4.72)

and the bosonic one, from collective excitations:
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1 � e��!q

i

. (4.73)

The total free energy is then F = F0 + Fcol + Fsp where the zero-temperature
energy F0 is a T -independent constant, unimportant as far as the present
work is concerned. The entropy is readily calculated as S = �(@F/@T )N,L2

and introducing the entropy per particle S̄ = S/N the second sound velocity
is [120, 157, 158]:
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nn
. (4.74)

In contrast with the 3D case [156] here the second sound has a discontinuity
at the critical temperature, as a consequence of the universal jump in the
superfluid density, as also noted in [159, 160]; the critical temperature will be
calculated in the next Subsection. Our results are reported in Fig. 4.6, we
note that the second sound velocity shows a characteristic minimum in the
BCS and intermediate regimes, as also noted in the 3D unitary case [156],
evolving into an approximately constant second sound velocity approaching
the BEC regime.

4.3.3 Critical temperature: the Berezinskii-Kosterlitz-Thouless
transition

The low-temperature physics of a 2D attractive Fermi gas is essentially
different from that of a 3D gas: the Mermin-Wagner-Hohenberg theorem
[141–143] prohibits the symmetry breaking at finite temperatures, so that
one can find off-diagonal long-range order and a finite condensate density
only at T = Tc = 0. However quasi-condensation, i.e. the the algebraic decay
of the phase correlator

hexp(i✓(r)) exp(i✓(0))i ⇠ |r|�⌘ (4.75)

where ⌘ is a T -dependent exponent and ✓ is the phase of the order parameter, is
observed up to a finite temperature TBKT, known as the Berezinskii-Kosterlitz-
Thouless (BKT) critical temperature [144, 145]. The other fundamental
signature of the BKT mechanism is the universal jump in superfluid density
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at the critical temperature, i.e. ns(T
�
BKT) 6= (T+

BKT) = 0. The transition
temperature is determined through the Kosterlitz-Nelson [149] condition

kBTBKT =
~2⇡

8m
ns(TBKT) (4.76)

which allows one to calculate TBKT, known the superfluid density. Within
the present framework we write the superfluid density as

ns = n � nn,f � nn,b (4.77)

where n is the density of the system and nn,f and nn,b are normal density con-
tributions arising, respectively, from the single particle excitations and from
the bosonic collective excitations. Using Landau’s quasiparticle excitations
formula [161] for fermionic:
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(4.78)

and for bosonic excitations:
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The single particle excitation spectrum is E
k

=
p

(~2k2/(2m) � µ)2 +�2
0,

as derived in Eq. (4.62), while the collective excitations spectrum can be
read from Eq. (4.69). Three profiles of superfluid density as a function of
temperature, for different values of the attractive potential strength, are
reported in Fig. 4.7.

As noted in Ref. [134] Eq. (4.78) and Eq. (4.79) hold as long as
there is no Landau damping hybridizing the collective modes with fermionic
single-particle excitations, otherwise the bosonic normal density would need
to be modified. In our case one can easily verify that for ✏b/✏F & 1 the
condition ✏b � kBT holds in the whole temperature region of interest,
strongly suppressing the pair breakup and the Landau damping [134]. On
the other hand, for ✏b/✏F . 1 we verify that the critical temperature is
determined by the fermionic contribution to the normal density, as one would
expect, making eventual corrections to nn,b neglectable. We then conclude
that Eq. (4.78) and Eq. (4.79) correctly describe the normal density for the
entire superfluid phase.

By numerically solving Eq. (4.76) we find the transition temperature
TBKT at different points of the BCS-BEC crossover. Our results, shown in
Fig. 4.8, are compared with very recently obtained experimental data in
Ref. [148], showing a excellent agreement with experimental data at least for
✏b/✏F & 1.

We stress that with respect to other derivations of TBKT in the 2D BCS-
BEC crossover [118, 162] the present theoretical prediction of TBKT includes
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Figure 4.7: Superfluid density for three different values of the scaled bind-
ing energy, from the weakly-coupled regime to the strong interacting one.
The black dashed line marks the Nelson-Kosterlitz condition, setting the
Berezinskii-Kosterlitz-Thouless critical temperature TBKT.

the contribution from a Gaussian-level equation of state along with the
contribution from the bosonic collective excitations. These contributions
are critical in correctly fitting experimental data, as clear from in Fig. 4.8.
We find that a theory of fermionic only excitations, like those developed in
[118, 162] or in a slightly different context in [163], overestimates the critical
temperature in the intermediate and strong-coupling regimes. Conversely, not
using a Gaussian equation of state underestimates the critical temperature
in the BCS regime, see Fig. 4.8.

Moving towards the BCS side of the crossover, however, the agreement is
slightly worse, the experimental TBKT being bigger than 0.125✏F ; by inserting
into Eq. (4.76) the relation n = m/(~2⇡)✏F it is easily seen that the critical
temperature is not allowed to exceed the value TBKT = 0.125✏F , under the
very general assumption that the superfluid density is a decreasing function
of the temperature with ns(T = 0) = n. Thus we conclude that the slightly
worse compatibility observed cannot be reproduced within the framework
of the Kosterlitz-Nelson criterion, as defined by Eq. (4.76), and should be
attributed to different physics, like the mesoscopic effects mentioned in [164]
in the same regime. Nonetheless we stress that our results are still within
1.2� from experimental data, when statistical and systematic errors are taken
into account.
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Figure 4.8: Our theoretical prediction for TBKT (black solid line) as com-
pared to the recent experimental observation reported in [148], temperature
estimated through algebraic decay, the error bars account for statistical and
systematic errors. Our prediction uses a Gaussian equation of state, including
the contribution from single particle modes and collective excitations. A
theory with fermionic only excitations (gray dot-dashed line) fails to provide
an agreement with experimental data in the BEC regime, whereas a theory
using a mean-field equation of state would underestimate TBKT in the weak
coupling regime (gray dashed line).
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4.4 Regularization in the deep-BEC limit

In this Section we investigate the relation between the fermionic scattering
length as and the boson-boson scattering length in the deep-BEC regime ab,
as analyzed in Ref. [4].

Performing a cutoff regularization of the zero-point energy the bosonic
and fermionic scattering lengths are found to be related by ab = (2/3) as,
in good agreement with other theoretical investigations [117, 165, 166] and
Monte Carlo simulations [111]. We stress however that the present result
is fully analytical, contrary to all other beyond-mean-field predictions [111,
117, 165–167], and it is based on a transparent cutoff regularization and
subsequent renormalization3.

4.4.1 Mean field and fluctuations in the deep BEC limit

We consider a three-dimensional Fermi gas of ultracold and dilute two-spin-
component neutral atoms. As usual the atomic fermions are described in the
path integral formalism by the complex Grassmann fields  �(r, ⌧),  ̄�(r, ⌧)
with spin � = (", #) [36, 76]. The partition function Z of the uniform system
at temperature T , in a three-dimensional box of volume L3, and with chemical
potential µ can be written as

Z =

Z
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where
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is the Euclidean action functional and L is the Euclidean Lagrangian density,
given by

L =  ̄�
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where g0 is the strength of the s-wave inter-atomic coupling [36, 76]. Sum-
mation over the repeated spin index � in the Lagrangian is intended and
� ⌘ 1/(kBT ) and kB is the Boltzmann constant.

Through the usual Hubbard-Stratonovich transformation [36, 76] the
Lagrangian density L , quartic in the fermionic fields, can be rewritten as a
quadratic form by introducing the auxiliary complex scalar field �(r, ⌧). As
already seen in Chapter 3 and in this Chapter the auxiliary field � is to be
decomposed as the sum of a constant and uniform contribution �0, to be
determined self-consistently, and the fluctuations around this value

�(r, ⌧) = �0 + ⌘(r, ⌧) , (4.83)
3An similar approach using dimensional regularization has been used in the two-

dimensional case [153].
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where ⌘(r, ⌧) is the complex paring field of bosonic fuctuations [36, 71, 76].
By neglecting bosonic fluctuations, i.e. by setting ⌘(r, t) = 0, and inte-

grating over the fermionic fields  �(r, t) and  ̄�(r, t) as analyzed in detail in
Chapter 3 one gets immediately the mean-field (saddle-point and fermionic
single-particle) partition function [36, 71, 76]

Zmf = exp
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, (4.84)
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with ✏
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= ~2k2/(2m) and
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is the energy of the fermionic single-particle elementary excitations. At zero
temperature (� ! +1) the mean-field grand potential ⌦mf = �kBT ln Zmf
becomes
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2
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The constant, uniform and real gap parameter �0 is obtained by minimizing
⌦mf with respect to �0, namely
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As opposed to the treatment in Chapter 3 here we impose a cutoff on the
gap equation
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, (4.89)

where the ultraviolet cutoff ⇤ is introduced to avoid the divergence of the
right side of Eq. (4.89) in the continuum limit
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Equation (3.79), relating the bare interaction strength g0 to the physical
s-wave scattering length as of fermions is also rewritten introducing a cutoff
[168]
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so that, after integrating over the momenta, it reads
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We stress that in the strong-coupling BEC limit, where g0 ! �1, the second
term on the right of Eq. (4.91) dominates and as = ⇡/(2⇤) ! 0+ when ⇤ is
sent to infinity [168].

Inserting Eq. (4.90) into Eq. (4.89) we obtain the regularized gap equation
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where one can safely take the limit ⇤ ! +1, recovering the usual treatment
analyzed in Chapter 3, in particular finding the energy gap �0 as a function
of the chemical potential µ and the scattering length as. We stress that
in the BCS limit, where as ! 0�, the chemical potential µ is positive and
µ/�0 ! +1. At unitarity, where as ! ±1, one finds µ/�0 = 0.8604
showing that the chemical potential µ is still positive. In the BEC regime,
where as ! 0+, the chemical potential becomes negative and it is given by

µ = � ~2

2ma2
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+
1
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ma2
s
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�2

0 , (4.93)

while µ/�0 ! �1. Notice that ✏b = ~2/(ma2
s) is the binding energy of the

atomic dimers (composite bosons) which are formed at unitarity [45, 81, 168]
and clearly µ = �✏b/2 in the deep BEC limit.

Let us go back to the zero-temperature grand potential in Eq. (4.87).
In the BCS limit, where as ! 0�, the energy gap �0 goes to zero and
the mean-field grand potential becomes that of a non-interacting Fermi gas,
namely

⌦mf = �L3 2
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In the BEC limit, where as ! 0+, the mean-field grand potential reads [45]
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We point out that in this limit both �0 and |µ| diverge but |µ| diverges faster
and the grand potential ⌦mf goes to zero.

Fluctuations are accounted for as reviewed in Section 4.1, in particular
the action is expanded around �0 up to the quadratic (Gaussian) order in
⌘(r, t) and ⌘̄(r, t), yielding
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is the Gaussian action of fluctuations in the reciprocal space with q = (q, i⌦m)
the 4-vector denoting the momenta q and Bose Matsubara frequencies ⌦m =
2⇡m/�. The 2 ⇥ 2 matrix M(q) is the inverse fluctuation propagator, as
analyzed in Section 4.1. The energy ~!

q

of the bosonic collective excitations
can be extracted from M(q) [117, 118, 134, 138, 168] and it is given by

~!
q

=
q

✏
q

(�✏
q

+ 2mc2
s) (4.98)

where ✏
q

= ~2q2/(2m) is the free-particle energy, � takes into account the
first correction to the familiar low-momentum phonon dispersion ~!

q

' cs~q
and cs is the sound velocity. Both � and cs depend on the chemical potential
µ and the energy gap �0. In particular, one finds [81, 138]
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Integrating over the bosonic fields ⌘(q) and ⌘̄(q) in Eq. (4.96), at zero
temperature we find the grand potential
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where ⌦mf is given by Eq. (4.87), while ⌦fl reads

⌦fl =
1

2

X

|q|<⇤

~!
q

. (4.102)

This is the zero-point energy of bosonic collective excitations [45, 134, 168],
and again an ultraviolet cutoff ⇤ is introduced to avoid the divergence in the
continuum limit

P

q

! V
R

d3
q/(2⇡)3.

4.4.2 Scattering length of composite bosons in the BEC limit

Expanding Eq. (4.102) in powers of ⇤ [168] we find:
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(4.103)

We note that the first two terms are truly divergent; the third term, despite
being / ⇤ is indeed convergent, as we are going to show shortly and the
fourth term is subleading in the BEC limit.
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We then want to regularize the ⇤5 and ⇤3 terms and this can be done
by redefining the bare parameters [169] in the mean-field grand potential in
Eq. (4.95), introducing their renormalized counterparts. One then finds that
the following regularization pattern removes the divergencies at the leading
order:
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(4.104)

having used the deep-BEC relations in Eqs. (4.99), (4.100) and, as previously
discussed, the fact that in the strong-coupling BEC limit the cutoff ⇤ can be
obtained from Eq. (4.91) and it reads

⇤ =
⇡

2as
. (4.105)

We now analyze the leading convergent contribution, i.e. the ⇤ term of
Eq. (4.103); even though it seems divergent, being proportional to ⇤, actually
it is not because in the BEC limit c4

s goes to zero faster than 1/⇤.
Using Eqs. (4.93), (4.99), (4.100) and (4.105) in the deep BEC regime

we have |µ| = ~2/(2ma2
s), � = 1/4, mc2

s = �2
0/(8|µ|), and the ⇤ term of Eq.

(4.103) becomes

⌦fl = �L3 ↵
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0
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with ↵ = 2. It is important to stress that Eq. (4.106) is formally the
same formula found by Diener, Sensarma, and Randeria [117] by using a
different regularization procedure. The difference is that they have determined
numerically the parameter ↵ finding ↵ = 2.61 [117], while here we derive
↵ = 2 analytically.

In the BEC limit, taking into account Eqs. (4.95) and (4.106) the total
grand potential is given by

⌦ = ⌦mf + ⌦fl = �L3 (1 + ↵)
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◆3/2 �4
0
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, (4.107)

with (1 + ↵) = (1 + 2) = 3. Here the grand potential ⌦ depends explicitly
on both µ and �0. Consequently, the total number N of fermions must be
calculated as follows
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and the number density n = N/L3 reads

n =
(1 + ↵)

16⇡
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. (4.109)
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This expression shows that, at fixed number density n, in the BEC limit,
where both |µ| and �0 go to infinity, one has |µ| ⇠ �4

0 and, from Eq. (4.107)
it follows that ⌦ goes to zero. To obtain Eq. (4.109) we have used Eq. (4.108)
but also Eq. (4.93), which immediately gives
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' 4
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(4.110)

Taking into account Eq. (4.109), the equation (4.93) for the chemical potential
in the BEC limit can be rewritten as

µ = � ~2

2ma2
s

+
⇡~2

m

as

(1 + ↵)
n , (4.111)

where the second term in the r.h.s. is half of the chemical potential µb =
4⇡~2abnB/mb of composite bosons of mass mb = 2m, density nb = n/2, and
boson-boson scattering length

ab =
2

(1 + ↵)
as =

2

3
as . (4.112)

This result is in good agreement with other beyond-mean-field theoretical
predictions: ab ' 0.75as of Pieri and Strinati [167], ab ' 0.60as of Petrov,
Salomon and Shlyapnikov [165] (and also Astrakharchik, Boronat, Casulleras,
and S. Giorgini [111]), and ab ' 0.55as of Hu, Liu and Drummond [166]
(and also Diener, Sensarma and Randeria [117]). On the other hand the
mean-field result is quite different, namely ab = 2as [71]. Contrary to all
other derivations [117, 165–167] our result is fully analytical.



5
A gauge approach to cuprates

In this Chapter I will present some original results derived within a theoretical
model for high-Tc superconductivity in cuprates. After an introduction to the
high-Tc superconductivity in cuprates and a review of the main experimental
properties in Section 5.1, the model [5] for hole doped cuprates will be
introduced and reviewed in Section 5.2: the hole is decomposed in the
product of a charged spinless holon and a neutral spin 1/2 spinon, each one
bound to a Chern-Simons flux through which the statistical properties of each
particle can be changed. The appearance of a finite density of incoherent
holons, followed by a finite density of incoherent spinons and finally by the
coherence for the recombined electron marks three critical temperatures the
last of which we identify as the superconducting transition temperature.

Subsequently I will turn to the superfluid density which is the main sub-
ject of the present Chapter; a preliminary investigation of this experimental
feature within the aforementioned model is the subject of Ref. [170], the
complete account presented in detail here in Section 5.3 follows the thor-
oughly revised and improved version published in Ref. [7] and includes the
discussion of the separate contributions arising from the holon and spinon
section, a derivation of a Ioffe-Larkin-like rule for the composition of the two
contributions, an analysis of the universality properties in the underdoped
regime and a comparison with experimental data.

Finally I will present some novel developments, in particular I will analyze
the behavior of the superfluid density in the overdoped region, showing that
normalized superfluid density data hints at three different coherence states
of the holon+spinon subsystem. I will also present and discuss an improved
version of the phase diagram for the model.

Throughout this Chapter natural units ~ = kB = 1 are often intended.

83
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5.1 Experimental review

The corpus of experimental papers regarding high-Tc cuprates is very large,
in fact more than 100 000 scientific papers have been published1 on the
topic after the initial discovery of high-Tc superconductivity in cuprates by
Bednorz and Müller in 1986 [47]: clearly a full review of experiments far
exceeds the scope of the present Thesis. I shall discuss only the universal
features present in all high-Tc cuprates, in addition to that I will analyze
some main experimental features, with particular emphasis on those more
relevant for the present work.

The term cuprates denotes a broad class of materials which, in particular
conditions, exhibit superconductivity at very high critical temperatures, even
exceeding 130K at atmospheric pressure in the case of HgBa2Ca2Cu3O8 [172].
Cuprates have been posing and still pose a great challenge to the theorist as
the microscopical mechanism behind superconductivity in these materials is
still not completely understood, despite a huge theoretical and experimental
effort, motivated also by technological implications.

Cuprates are characterized by a number of different features, their chemical
compositions being very diverse; following the approach in Ref. [13] we focus
on the common and universal features, which most likely are related to the
microscopical mechanism of superconductivity in these materials, frequently
neglecting the material-dependent features. All high-Tc cuprates share the
following features:

• They are composed by a number of stacked CuO2 layers, hence the
name “cuprates”, from Latin cuprum, copper. The planes can be de-
scribed as a square lattice, with a copper atom at each lattice site,
and an oxygen atom halfway between each couple of copper atoms.
Between the planes lie a number of different structures, usually either
mono-elemental “spacer” layers mirroring the structure of the CuO2

planes or “charge reservoirs”. Usually each unit cell has n CuO2 layers
and n � 1 “spacer” layers in between. These structures characterize
each different cuprate compound and can affect the superconductivity,
i.e. by reducing or increasing the maximum critical temperature or
by completely destroying any superconductivity. Among many com-
binations and stoichiometries it is clear that the only necessary and
essential feature for the onset of superconductivity is the presence of
the CuO2 planes.

Conventionally the a and b crystallographic axes are chosen along the
CuO2 planes, while the c axis is orthogonal to them. It is widely
believed that the CuO2 planes are the main seat of superconductivity
[13, 173]: inter-layer coupling effects are present, but they should not

1This figure is from more than a decade ago [171], it could easily be doubled by now.
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play a key role in the onset of superconductivity. This quasi-2D nature
of cuprates is supported by experimental evidence regarding transport
properties. There is also evidence that the Cooper pairing mechanism
takes place independently layer by layer [13]. As a consequence most
theoretical models developed throughout the years aim at modeling the
essentially two-dimensional physics of the CuO2 planes, neglecting the
inter-layer effects.

The lattice parameter along the a and b axes is 3.8Å, the lattice
parameter along the c axis varies from material to material due to
the many different structures between the layers, it is in the order of
magnitude of tens of Å.

• The superconductivity is due to the formation of Cooper pairs, but the
pairing mechanism cannot be simply explained in terms of the BCS
theory. In fact the most spectacular manifestation of superconductivity
in cuprates is the extraordinarily high critical temperature, which is
not compatible with the standard scenario of phonon-mediated pairing
[174].

• The order parameter has dx2�y2 symmetry [175, 176].

• The stoichiometry in superconducting cuprates can be changed by
adding some impurities or by replacing a fraction of an element with
a different one. This process is referred to as doping. The critical
temperature Tc strongly depends upon the doping.

For instance one could start with the undoped (so-called “parent com-
pound”) La2Cu2O4, adding strontium impurities replacing lanthanum
atoms, modifying the stoichiometry to La2�xSrxCu2O4. A number
of chemical formulas for the most common cuprate compounds are
reported in the following table, besides the standard chemical formula
we also report the notation (CuO2)n An�1X proposed by Leggett [13]
emphasizing the chemical structure of the unit cell with n CuO2 planes
separated by n � 1 “spacer” layers with chemical formula A and a
number of other structures, with chemical formula X.

Common Standard n Notation as
name chemical formula proposed by Leggett

BSCCO Bi2Sr2CaCu2O8+� 2 (CuO2)2CaBi2Sr2O4+�

YBCO YBa2Cu3O6+� 2 (CuO2)2YBa2CuO2+�

LSCO La2�xSrxCuO4 1 (CuO2)La2�xSrxO2

HgBCO HgBa2Ca2Cu3O8 3 (CuO2)3Ca2HgBa2O2

NCCO Nd2�xCexCuO4 1 (CuO2)Nd2�xCexO2

1-layer SrxCa1�xCuO2 1 (CuO2)SrxCa1�x
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For the aforementioned reasons we focus on the universal planar copper-
oxygen structures: in every compound the net effect of the impurity is
to inject holes (i.e. remove electrons) into the CuO2 planes2. In fact
the vast majority of experimental features observed in cuprates are a
function of the doping �, i.e. the concentration of injected holes and of
the temperature. As a consequence the conventional phase diagram for
cuprates has the doping � on the x axis and the temperature T on the
y axis, see Fig. 5.1.
Of course this supports the point of view that the physics of supercon-
ductivity in cuprates is essentially determined by what happens in the
CuO2 planes: the details of which element is providing the additional
holes are deemed of secondary importance, the most important feature
being the how many holes effectively go to the CuO2 planes. In other
words the physics outside the planes seems to play a secondary role in
most experimental features of cuprates.

• A closer look at the phase diagram in Fig. 5.1 shows that superconduc-
tivity begins at about � ⇠ 0.05 and ends at � ⇠ 0.27, with a maximum
for � ⇠ 0.16, outlining the so-called superconducting dome. The shape
of the dome is very well approximated by a parabola, which can be
parameterized as [13, 177]:

Tc(�) ' Tc,max
�

1 � 82.6(� � 0.16)2
�

. (5.1)

The doping � ⇠ 0.16 is the so-called optimal doping for which the
critical temperature reaches its maximum value; it is customary to refer
to the regions with lower (higher) doping as, respectively, underdoped
(overdoped) region.

• The phase diagram is very rich, with many different regions out of the
superconductive transition, whose physics is far from being completely
and thoroughly understood. Referring to Fig 5.1 we note that for high
doping values a cuprate is in the Fermi liquid regime, whose behavior is
well understood within the usual theoretical approaches to metals [13].
Lowering the doping the metallic characteristics become progressively
more and more different from what one would expect for a standard
metal, hence the name of the regime, strange metal. The transition from
the Fermi liquid to the strange metal regime appears to be continuous,
as a crossover: for instance the in-plane d.c. resistivity, one of the most
studied features of cuprates, can be parameterized as ⇢(T ) ⇠ T↵ with
↵ = 2 in the Fermi liquid regime as one would expect. However as

2We note that there is also a minority of cuprates in which electrons, rather than holes,
are added upon doping to the CuO2 planes. The behavior of these materials is similar but
not identical to hole-doped cuprates. These materials are not considered in the present
work.
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Figure 5.1: Cuprates phase diagram, adapted from [178].

the strange metal regime is approached ↵ gets smaller so that at the
optimal doping the resistivity is a linear function of temperature, i.e.
↵ = 1.
For even even lower doping, after what might still be a crossover, marked
by the dashed line in Fig 5.1, lies the pseudogap phase. The crossover
temperature is commonly referred to as T ⇤. The pseudogap phase is
characterized by a strong reduction of the spectral weight hence its
name, and exhibits many anomalous properties, the role of which is
still debated. Here the resistivity as a function of the temperature
exhibits an inflection point, which many consider as the experimental
signature of the strange metal-pseudogap “transition” [179]; for lower
temperatures the resistivity is a sublinear function of temperature until
it reaches a minimum, then it either drops to zero as a result of entering
the superconducting dome, or apparently diverges if there is no phase
transition down to T = 0. Finally for even lower doping levels a cuprate
enters an anti-ferromagnetic Mott insulator phase.

• The Fermi liquid and strange metal regimes are characterized by a
large Fermi surface (enclosed volume ⇠ 1 � �). On the other hand the
pseudogap regime has a small Fermi surface (enclosed volume ⇠ �),
composed of Four fermi arcs, shrinking as the temperature is lowered
becoming four nodal points as the superconducting phase is reached.
Thus the Fermi surface in the pseudogap regime has the same symmetry
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as the order parameter in the superconducting phase, and actually
appears to be evolving into the nodal points of superconductivity,
supporting the point of view that the pseudogap should be a precursor
of superconductivity.

• The superfluid density will be the main subject of Section 5.3, so
we postpone a review of this important experimental feature to that
Section.

5.1.1 From the CuO2 planes to the Zhang-Rice singlets

A closer look at the CuO2 planes in the parent compound of cuprates shows
that each Cu atom is in the +2 oxidation state with all its orbital completely
filled, except for an unpaired electron in the outermost 2dx2�y2 orbital. On
the other hand the O atoms are in the �2 oxidation state and the outermost
2p shell is completely filled. An equivalent description can be given in terms
of holes, stating that for � = 0 in a cuprate there is a hole on each copper site.
Due to the nearest-neighbor exchange interaction the holes on each copper
site have a staggered anti-ferromagnetic spin configuration.

When additional holes are injected into the planes as a consequence of
the doping of the parent compound, they primarily reside on a hybridized p
oxygen orbital of the four oxygen atoms surrounding a copper, a pictorial
representation of this situation is shown in Fig. 5.2. These structures formed
by a hole on a hybridized oxygen orbital forming a spin singlet with an
opposite-spin hole on a copper site are called Zhang-Rice singlets [180] and are
generally believed to describe the low-energy dynamics of cuprates. It can be
shown that this single-band description can be derived from the two Hubbard
model [180] separately describing the copper and oxygen orbitals, furthermore
there are also experimental observations supporting the description in terms
of Zhang-Rice singlets [181].

Figure 5.2: The low-temperature dynamics of the holes in the CuO2 planes
can be described in terms Zhang-Rice singlets, i.e. a hole residing on a
hybridized p oxygen orbital shared between four oxygen atoms forming a spin
singlet with a hole residing on a copper site. Image adapted from [6].
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Let us try to derive a model describing the basic physics of Zhang-Rice
singlets3. A singlet overlaps with an overlap centered on a neighboring
site, so that a hole residing on the oxygen hybridized orbital has a finite
hopping probability of jumping on a neighboring hybridized oxygen orbital.
A description within the Hamiltonian formalism will contain the following
term:

Ĥkinetic = �t
X

hi,ji

 

X

↵

ĉ†i↵ĉj↵ + h.c.

!

, (5.2)

where ci,↵ (c†i,↵) respectively annihilates (creates) a hole in position i with
spin ↵. The hopping happens over an anti-ferromagnetic background, so that
one introduces an anti-ferromagnetic Heisenberg term:

ĤHeisenberg = J
X

hi,ji

Si · Sj (5.3)

and the spin operator is4

Si =
X

↵.�

ĉ†i↵
�↵�
2

ĉi� . (5.4)

Finally one has to consider that the energy penalty for having two holes
residing on the same hybrid orbital surrounding a copper site is much higher
than the other energies scales at play: in first approximation one may impose
a no-double-occupancy constraint, provided by the Gutzwiller projector:

P̂G =
Y

i

(1 � n̂i"n̂i#) , (5.5)

where the number operator is n̂i =
P

↵ ĉ†i↵ĉi↵. A minimal model encompassing
all these features is the t � J model:

Ĥ = P̂G

2

4

X

hiji

�tĉ†i↵ĉj↵ + JSi · Sj

3

5 P̂G . (5.6)

Usually the introduction of the Gutzwiller projector is challenging due to its
high non-linearity, in particular when using perturbative approaches. The
present formalism allows for an exact treatment the Gutzwiller projector.

3A more detailed derivation of the t� J model from Zhang-Rice singlets can be found
in Ref. [173].
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is the Pauli matrices

vector, we omit the hat symbol over the spin operator for simplicity’s sake.
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5.2 A gauge approach to high-Tc superconductivity
in cuprates

5.2.1 The t � J model: bosonization and spin-charge separa-
tion

As explained in the previous section the t � J is thought to encode the
fundamental features leading to superconductivity in cuprates, and constitutes
the starting point for the model used in the present Chapter. Typical values
of t and J for cuprates are t ⇡ 0.4 eV and J ⇡ 0.13 eV and can be inferred
through the analysis of the spin-waves modes in the parent compound [182],
these values being universal for all cuprates. In particular the fact that
J/t ⇠ 0.3 puts cuprates in the strong correlation regime. On the other-hand
the no-double-occupancy constraint and the Gutzwiller projection can be
justified by considering a three-band model describing the copper and oxygen
orbitals: the Mott gap � ⇠ 2 eV between Zhang-Rice singlets states and the
upper Hubbard band [183] is much higher than t, J .

More realistic models would also include a next-nearest-neighbor hopping
term t0, which is particularly important in correctly reproducing the exact
shape of the Fermi surface, leaving however the critical properties and the su-
perconductive transition essentially unchanged; the t0 term has been analyzed
also in the present framework, e.g. in Refs. [184, 185]. As opposed to the t
and J terms the magnitude of the t0 term is strongly material-dependent5.

Our starting point is the following Hamiltonian [188], describing the same
system as in Eq. (5.6) where, in addition, the particle number is controlled
by the chemical potential µ:

Ĥ = P̂G

2

4

X

hiji

�tĉ†i↵ĉj↵ + µ
X

j

n̂j + JSi · Sj

3

5 P̂G (5.7)

the sum over the repeated index ↵ being intended. The partition function
for the system can be written within the path-integral formalism as

Z (�, µ) =

Z

D D ⇤e�S( , ⇤) (5.8)

with the following action:
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(5.9)

5For instance in the case of BSCCO t0/t ' �0.3, while for LSCO t/t0 ' �0.1, see e.g.
Ref. [186] or Ref. [187].
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having introduced the Grassmann fields  and  ⇤ representing the hole
in stead of the annihilation and creation operators, ⌧ being the imaginary
time coordinate. The two-body potential ui,j is equivalent to the no-double-
occupancy constraint of the Gutzwiller projector:

ui,j =

8

>

<

>

:

+1 i = j

�J
4 i, j nearest neighbors

0 otherwise
(5.10)

To proceed with an analytical treatment of the model the quartic interac-
tion must be decoupled with the usual Hubbard-Stratonovich transformation
[189, 190], yielding

St�J( , ⇤, X, X⇤) =

Z �

0
d⌧
X

hiji

2

J
X⇤

hijiXhiji+
⇥

(�t + Xhiji) 
⇤
i↵ j↵ + h.c.

⇤

+

+
X

i

 ⇤
i↵ (@0 + µ) i↵ +

X

i,j

ui,j 
⇤
i↵ 

⇤
j� j� i↵ (5.11)

having introduced the pairing field Xhiji, and the functional integration in
Eq. (5.8) now needs to be extended over the X and X⇤ fields.

The treatment we are about to introduce relies on the idea of spin charge-
separation, i.e. the concept that the fundamental excitations in the t � J
model should be holons and spinons, i.e. particles carrying respectively only
charge and only spin, rather than electron or holes [6, 191, 192]. This point of
view is supported by the observation of spin-charge separation in 1D systems,
even in one-dimensional cuprate-like structures [193], along with a great deal
of theoretical work in 2D, supported by experimental hints of spin-charge
separation in the two-dimensional t � J model [194].

The spin-charge separation idea is implemented within the present for-
malism by decomposing the electron creation operator as the product of a
holon and a spinon operator:

 x↵ = h⇤
x⌃x↵ , (5.12)

more precisely hx is a 1-component fermionic (Grassman) field, while ⌃x is a
2-component bosonic (complex) field. The no-double-occupancy constraint is
automatically satisfied as h is a spinless fermion, while the condition

⌃⇤
x↵⌃x↵ = 1 (5.13)

at each lattice site ensures that
P

↵ 
⇤
x↵ x↵ = h⇤

xhx. We stress that the
decomposition in Eq. (5.12) adds an additional U(1) invariance to theory, as
the holonic and spinonic fields are defined up to a local phase factor

(

hj �! hjei⇤
j

⌃j↵ �! ⌃j↵ei⇤
j

⇤j 2 [0, 2⇡[ . (5.14)
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To distinguish this invariance from other invariances of the theory we name
it the h/s symmetry and denote its group as U(1)h/s.

When decomposing the electron as the product of a holon and a spinon
like in Eq. (5.12) one is free to choose the statistics for the holon and for the
spinon, provided that the recombined hole is still fermionic. If the system
were three dimensional the choice would be constrained by the fact that the
fermionic electron can only be the product of a fermion and a boson. In two
dimension there are many more possibilities as, beside the usual fermions
and bosons acquiring a ⌥1 factor upon exchange, there can also be particles
acquiring a phase factor upon exchange [195]. These particle are called anyons
and clearly the anyonic statistics generalize the fermionic and bosonic ones
in two dimensions.

We follow the idea initially advocated by Laughlin that the holon and
the spinon should be semions [196, 197], i.e. objects acquiring a ±i phase
factor upon exchange. The phase factor is halfway between the fermionic
and bosonic cases on the unit circle in the complex plane, hence the name
semions. This idea can be implemented in a very elegant way by extending
the Chern-Simons bosonization approach to the present case. A statistical
flux is bound to a particle, changing its statistical properties. The simplest
example is the Jordan-Wigner transformation in 1D [198]:

ĉ†j = â†je
�i⇡

P
l<j

â†
l

â
l (5.15)

where ĉ† is a fermionic creation operator, â† is a bosonic creation operator,
and the phase factors counts the number of exchanges reproducing the correct
statistics for the field. The same idea can be extended to our two dimensional
case, in the path integral formalism, binding a statistical flux to the holon
and to the spinon

 x↵ (B, V ) =
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R
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x

Bh⇤
x

�

P
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ei
R
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x

V
⌘

↵�
⌃x�

�

(5.16)

where �x is an arbitrary path on the two-dimensional from the point x to
infinity, P denotes the path ordering and B and V are respectively U(1) and
SU(2) gauge fields whose dynamics will be explained shortly.

The choice of the gauge group U(1)⇥SU(2) is motivated by the physics of
the system, in particular the U(1) gauge field is related to the charge degrees
of freedom and will take care of the statistics of the charge-carrying holons,
while the SU(2) gauge field is related to the spin degrees of freedom and will
determine the statistics of the spin-carrying spinons. The t � J Hamiltonian
in Eq. (5.7) is invariant under the U(1) transformation

ĉj↵ ! ei�
j ĉj↵ �j 2 R (5.17)

and under the SU(2) transformation

ĉj↵ ! U↵� ĉj� U 2 SU(2) . (5.18)
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so that the newly-introduced Chern-Simons gauge fields B and V will gauge
the original symmetries of the model. Further motivation for this choice
comes from the analogous 1D theory obtained from dimensional reduction:
in that context the U(1) ⇥ SU(2) gauge group has been shown to recover the
correct critical exponents [188, 199].

Let us make this intuitive description more rigorous by introducing the
following theorem6 [6, 188], establishing a link between the partition function7

expressed in terms of the electron field  and the partition function of a
system expressed in terms of a field � coupled to the gauge fields B and V ,
whose statistics are determined by B and V :

Z

D D ⇤e�S( , ⇤|A) =

=

R

DBDV
R

D�D�⇤e�[S(�,�⇤|A+B+V )+kU(1)SC.S.(B)+kSU(2)SC.S.(V )]
R

DBDV e�[kU(1)SC.S.(B)+kSU(2)SC.S.(V )]
. (5.19)

We denote the original action, minimally coupled the electromagnetic field
A by S( , ⇤|A) and we replace it by the same action coupled to the
electromagnetic field A and to the statistical gauge fields B and V , a kinetic
term giving dynamics to B and V is also added:

S( , ⇤|A) �! S(�,�⇤, A+B+V )+kU(1)SC.S.(B)+kSU(2)SC.S.(V ) (5.20)

and the dynamics of the gauge field are given by the Chern-Simons action:

SC.S. (B) =
1

4⇡i

Z �

0
d⌧

Z

dnx ✏µ⌫⇢Bµ@⌫B⇢ (5.21)

SC.S. (V ) =
1

4⇡i

Z �

0
d⌧

Z

dnx ✏µ⌫⇢ tr



Vµ@⌫V⇢ +
2

3
VµV⌫V⇢

�

(5.22)

and the fermionic field is replaced by

 ↵(x) �! �↵ (�x|B, V ) ⌘


ei
R

�

x

Bh⇤
x

�

P
⇣

ei
R

�

x

V
⌘

↵�
⌃x�

�

(5.23)

When considering the products in square brackets, i.e. the holon coupled
to the U(1) statistical flux and the spinon coupled to the SU(2) statistical
flux the global statistics are determined by the coupling constants kU(1) and
kSU(2) = +1. It can be shown that the choice

kU(1) = �2 kSU(2) = +1 (5.24)
6Refs. [6, 188] call the theorem “bosonization formula”, as the � field is initially bosonic

there, and is re-fermionized later. Here a more compact approach is used, more in the
spirit of Ref. [5], the statistical fluxes are tuned so that � is fermionic to begin with and
the bosonization formula actually connects two fermionic representations.

7We can consider X as an additional gauge field like A in Eq. 5.11. After applying Eq.
5.19 the integration over the auxiliary field X is carried out.
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leaves the correct fermionic statistics for the recombined hole while making
the holons and spinons, when bound to their statistical fluxes, semions.

We stress that the statistics of the holon and spinon when bound to
the respective statical fluxes are determined by the gauge fields B and V ,
which in turn depend the coefficients in Eq. (5.24), changing them allows
one to modify the statistic, in particular the slave boson and slave fermion
approaches can be recovered as particular case [6] with an appropriate choice
of kU(1) and kSU(2) [200]. It is known that the slave fermion and slave
boson approaches, although formally completely equivalent, give different
result when the mean-field approximation is taken: this means that the
mean-field approximation is removing relevant information. As a solution
one may include further information beyond the mean-field or, alternatively,
choose a different starting point more suited to preserve the real physics
of the system upon mean-field approximation. Arguably the present gauge
approach, retaining the U(1) and SU(2) symmetries of the t � J model is a
good choice in 1D and should provide a better starting point also in 2D.

The partition function is now calculated by integrating over all the matter
and gauge fields, and explicitly introducing the constraint in Eq. (5.13)

Z (�, µ) =

Z

DhDh⇤D⌃↵D⌃⇤
↵DBDV e�S(h,h⇤,⌃

↵

,⌃⇤
↵

,B,V )� (⌃⇤⌃� 1)

(5.25)
We also note that, when the action is expressed in terms of holons and spinons,
the no-double-occupancy constraint is automatically satisfied, as the holons
are spinless fermions: as anticipated the Gutzwiller projector is treated in a
non-perturbative way in the present formalism.

As a result of the above procedure we obtain an action for the t�J model
in terms of holons and spinons whose statistics is modified by the statistical
fluxes provided by the gauge fields B and V :

S =

Z �

0
d⌧

⇢

h

h⇤
j (@0 � iB0(j) � (µ + 1/2J))hj + iB0(j)+

+
�

1 � h⇤
jhj

�

⌃⇤
j↵ (@0 + iV0(j))↵� ⌃j�

i

+

� t
X

hiji

h

(h⇤
je

i
R

hiji Bhi⌃
⇤
i↵(Pei

R
hiji V )↵�⌃j� + h.c.)+

+
J

2
(1 � h⇤

i hi)(1 � h⇤
jhj)(|⌃⇤

i↵(Pei
R

hiji V )↵�⌃j�|2 � 1/2)
i

�

� 2SC.S.(B) + SC.S.(V ) (5.26)

The doping, i.e. the concentration of additional holes injected in the
CuO2 planes with respect to the parent compound, is � = µ + J/4.
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5.2.2 Gauge fixings

The action in Eq. (5.26) cannot be used in order to calculate the partition
function for the system: unphysical degrees of freedom have been added in
the spin-charge separation process and when introducing the statistical fluxes.
Namely the system is invariant under the U(1)h/s ⇥U(1)⇥SU(2) group. The
symmetry introduced by the spin-charge decomposition and analyzed in Eq.
(5.27) is still a symmetry after the introduction of the statistical fluxes [200]:

(

hj �! hjei⇤(j)

⌃j↵ �! ⌃j↵ei⇤(j)
⇤(x) 2 [0, 2⇡[ , (5.27)

the second U(1) subgroup corresponds to the electric charge and to the field
Bµ

8

>

<

>

:

hj ! hjei⇤(j)

h⇤
j ! h⇤

je
�i⇤(j)

Bµ(x) ! Bµ(x) + @µ⇤(x)

⇤(x) 2 R (5.28)

and finally the SU(2) subgroup corresponds to the spin degrees of freedom
and to the field Vµ

8

>

<

>

:

⌃j ! g(j)†⌃j

⌃⇤
j ! ⌃⇤

jg

Vµ(x) ! g(x)Vµ(x)g†(x) � ig(x)@µg†(x)

g(x) 2 SU(2) . (5.29)

In this Subsection we introduce a gauge fixing for the U(1) and SU(2)
invariances, postponing the fixing of the U(1)h/s to a latter moment. The
U(1) invariance is gauge-fixed by imposing the Coulomb gauge:

@µBµ = 0 . (5.30)

Noting that B0 appears linearly in the action and can be integrated, one
obtains:

Bµ = B̄µ + �Bµ , (5.31)

with
B̄ =

1

2

X

j

@µ arg(x � j) (5.32)

and
�Bµ(x) =

1

2

X

j

h⇤
jhj@µ arg(x � j) (5.33)

where the static part B̄µ provides a ⇡-flux phase, i.e. exp
�

i
R

⇤ B̄
�

= �1 for
every plaquette, ⇤ being the boundary of a plaquette [5].
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The SU(2) invariance is gauge-fixed by imposing the Néel gauge, retaining
the anti-ferromagnetic bipartite structure of the original lattice

⌃j = �|j|x

✓

1
0

◆

(5.34)

⌃⇤
j =

�

1 0
�

�|j|x (5.35)

with |j| ⌘ j1 + j2. Having fixed the spinon configuration corresponds to the
fact that the low-energy spinon dynamics are essentially fluctuations over
a static anti-ferromagnetic background: the spin degrees of freedom have
been transferred to the gauge field V and its SU(2) transformations g upon
which one needs to extend the functional integration. The integration over
the gauge field V is then split as an integration over a field V µ

(c), obeying the
Coulomb gauge condition

@µV µ
(c) = 0 (5.36)

and its gauge transformations g

V = g†V(c)g + g†@g (5.37)

g being a SU(2)-valued field. Similarly as before the 0 component of V
appears linearly in the action and can be integrated providing the following
constraint8:

V (c)
µ '

X

j

�

1 � h⇤
jhj

�

⇣

�|j|x g†j
�a

2
gj�

|j|
x

⌘

11
@µ arg(x � j)�a (5.38)

At the end of the gauge-fixing procedure the action is S = S1 + S2 where

S1(h, h⇤, A, U) =

Z �

0
d⌧
n

X

j

⇥

h⇤
j (@0 � µ)hj + i(1 � h⇤

jhj)Aj

⇤

+

� t
X

hiji

(hiUhijih
⇤
j + h.c.)

o

(5.39)

and

S2(h, h⇤, U) =

Z �

0
d⌧
X

hiji

J

2
(1 � h⇤

i hi)(1 � h⇤
jhj)

�

|Uhiji|2 � 1/2
�

(5.40)

having defined the auxiliary lattice gauge fields

iAj ⇠
⇣

�|j|x g†j@0gj�
|j|
x

⌘

11
(5.41)

Uhiji ⇠ ei
R

hiji(B̄+�B)
⇣

�|i|x g†i (Pei
R

hiji V (c)

)gj�
|j|
x

⌘

11
(5.42)

8The constraint is approximate, an exact treatment can be found in [5].
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In conclusion of the present subsection we review the result obtained:
starting from a path integral representation of the t � J model we have split
the hole into the product of a spinon and a holon. By binding them to a
statistical flux we can modify the statistics, in particular we have chosen
semionic statistics for both the holon and the spinon. The gauge fields B
and V can be chosen as in Eq. (5.31) and in Eq. (5.38), while the effective
action in terms of holon, spinons and statistical fluxes is given by Eq. (5.39)
and Eq. (5.40). The h/s symmetry introduced by the spin-charge separation
still needs to be fixed.

As a final consistency check we count the degrees of freedom of the theory
we obtained: the Grassman fields h and h⇤ account for 2 d.o.f., while the 3
degrees of freedom are carried by g 2 SU(2). The h/s symmetry, still to be
fixed, would provide an additional constraint (�1 d.o.f.) giving a total of 4
d.o.f., in agreement with the original theory in terms of  ↵ and  ⇤

↵.

5.2.3 Optimization of the spinon configuration

It is not possible to proceed with the usual BCS treatment of the pairing,
choosing a saddle-point value for the holons and for the spinons, eventually
reinstating the fluctuations in an approximate way, as done in the context of
the BCS-BEC crossover in the previous Chapters: in the present case the
fields Aj and Uhiji depend on both the charge and spin degrees of freedom,
hindering a simultaneous diagonalization of the action in terms of h and g
[201].

A different approach consists in looking for a holon-dependent spinon
configuration gm

j (h, h⇤) maximizing the partition function, i.e. minimizing
the action. Afterwards the fluctuations around the optimal configuration
can be added, either in an exact or in an approximate way. We stress that
finding a spinon configuration optimizing the partition function given a fixed
holon configuration is akin to the Born-Oppenheimer approximation in which
“fast” and “slow” variables are separated [17], and in fact a justification for
the optimization procedure lies in the observation that the holon effective
mass is much bigger than its spinon counterpart in the t � J limit [200].

In this subsection we will summarize the main result for this optimization
procedure, whose complete treatment can be found in Ref. [200]. We state
the following theorem: the partition function defined as

⌅(A, U) =

Z

DhDh⇤e�S(h,h⇤,A,U) (5.43)

has the following upper bound

|⌅(A, U)| 
Z

DhDh⇤e�[S1(h,h⇤,0,Û)+S2(h,h⇤,0)] (5.44)
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where Û is the time-independent configuration of the U field maximizing

Z

DhDh⇤ e�[S1(h,h⇤,0,U)+S2(h,h⇤,0)]
�

�

�

@0U=0
. (5.45)

While it is not possible to find a spinon configuration strictly saturating the
bound, it is however possible to find a configuration saturating the bond on
average. Once this configuration has been determined an exact treatment is
still possible by introducing the fluctuations around this optimal configuration.
In the small temperature and small doping limit we can parameterize the
optimal configuration as follows [200]:

gj = ḡjRj g̃j = e�
i
2

P
i 6=j

(�1)i�
z

arg(i�j)Rje
i⇡

2 (�1)|j|�
y

h⇤
j

h
j (5.46)

where Rj 2 SU(2) can be conveniently expressed in CP 1 form:

Rj =

✓

bj1 �b⇤j2
bj2 b⇤j1

◆

b⇤j↵bj↵ = 1 (5.47)

b↵ being a two-component complex field satisfying the constraint b⇤↵b↵ = 1 at
every lattice site. The optimal spinon configuration, as defined above, is then
given by Rj = 1 and the fluctuations can be taken into account by including
the fluctuations around the optimal value. The V (c) SU(2) statistical gauge
field can be written in a much simpler form when acting over an optimal
spinon configuration

V̄µ = �
X

j

h⇤
jhj

(�1)j

2
@µ arg(x � j)�z (5.48)

and the remainder �V = V (c) � V̄ can be seen as the back-reaction of the
spinon fluctuations away from their optimal configuration. On the other
hand, the non-fluctuating part V̄µ describes spin vortices attached on each
holon site.

Finally the effective action can be written as S = Sh + Ss with

Sh =

Z �
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=

;

(5.49)
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and

Ss =

Z �
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=

;

(5.50)
the holonic and spinonic part being formally separated; however they are still
“connected” by the statistical gauge fields and by the h/s gauge invariance.

5.2.4 Effective action for holons and spinons

The treatment has been kept exact up to this point. The derivation of the
optimal spinon configuration gm assumes the low temperature, low doping
limit but if the fluctuations are added in a complete way, i.e. the SU(2)-valued
field R spans all the group configurations, the theory is still exact.

The main approximation of the present approach consists in neglecting
the back-reaction of the spinon fluctuations in the gauge field V , i.e. setting
�V = 0, which is reasonable provided the spinon fluctuations are small enough
[200]. After this approximation the field operator formed by the spinon and
its statistical flux is

⇣

Pei
R

�

x

V̄
⌘

⌃j = e
i
R

�

j

V̄
ḡjRj�

|j|
x

✓

1
0

◆

. (5.51)

which is now describing a boson.
The statistical flux modifies the statistics of the matter field it is bound to:

in fact neglecting �V changes the statistical properties of the combination in
Eq. (5.51), and, as a consequence, the fermionic statistics of the hole are also
modified. For consistency one may also neglect the holon fluctuations in the
gauge field B, thus setting �B = 0. Doing so the correct fermionic statistic
for the electron is recovered. The holon field, along with its statistical flux is
now

ei
R

�

x

B̄h⇤
x . (5.52)

and it is now describing a fermion. It should be noted that in 1D the semionic
statistics are fundamental in deriving the correct physics and the correct
critical exponents [188]; it is conjectured, however, that in 2D they should be
less relevant at this level, as the holon and spinon form a bound state [200].

In order to proceed let us calculate the link variable appearing in Eq.
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(5.49) and in Eq. (5.50):
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ie
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R
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↵hijib
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◆

(5.53)
having introduced

↵hiji = e
i
2

R
hiji V̄

z . (5.54)

The appearance of a RVB-like term [191] along with an Affleck-Marson-like
[202] term at the same time is a peculiarity of the semionic approach of the
present theory [5], not appearing in the slave boson or in the slave fermion
approaches.

Skipping the time-derivatives introduced by the path integral formalism
for the sake of clarity, the physics of holons and spinons is encoded in the
holon hopping term:

t
X

hiji

h⇤
je

i
R

hiji B̄hiAMij (5.55)

and in the spinon Heisenberg term:

J

2

X

hiji

(1 � h⇤
i hi)

�

1 � h⇤
jhj

�

⇣

|RV Bij |2 � 1/2

⌘

. (5.56)

We stress, though, that the dynamics of holons and spinons are however still
linked by the V field appearing in the AM and RV B factors and by h/s
gauge invariance which still needs to be gauge fixed. At first we analyze the
free holon dynamics, considering the holon hopping term in Eq. (5.55); the
modulus of the Affleck-Marston factor AMij can be deemed as constant due
to the slow nature of the V̄ field for low doping concentrations, its phase
exp (i✓ij), however, cannot be neglected and needs to be accounted for; we
rewrite the holon hopping term as

t
X

hiji

h⇤
je

i
R

hiji B̄ei✓
ijhi . (5.57)

The static gauge field B̄ derived in Eq. (5.32) induces a ⇡-flux phase on
each plaquette, so having a 2 ⇥ 2 periodicity in terms of the lattice spacing,
as shown in Fig. 5.3. It is thus natural, using a standard procedure [203], to
divide the lattice in four sublattices. Denoting each lattice site through the
coordinates (j1, j2), it will belong to the (1) sublattice if both j1 and j2 are
even; to the (2) sublattice for j1 odd, j2 even; to the (3) sublattice for j1 even,
j2 odd and finally to the (4) sublattice is j1 and j2 are both odd. We then
group them creating the Néel sublattices, A = {(1), (3)} and B = {(2), (4)},
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Figure 5.3: The ⇡-flux per plaquette, in Eq. (5.33), has a 2 ⇥ 2 periodicity.

in a checkerboard fashion. A similar treatment can be applied to the field
operators, denoting with h(a) the restriction of the holon field to the a-th
sublattice it is convenient to define the following spinors

 1 =

 

 (A)
1

 (B)
1

!

=

✓

e�i⇡

4 h(1) + ei⇡

4 h(4)
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4 h(3) + ei⇡
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(5.58)
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◆

(5.59)

through which the low-energy effective holon action in the continuum limit
can be recast [200] as the action of gapless Dirac fermions

Sh =

Z

d3x
2
X

r=1

 ̄r[�0(@
0 ���erz

⇤
↵@0z↵)+ t(�µ@

µ �erz
⇤
↵�µ@

µz↵)] r (5.60)

with sublattice-depending charge e1 = +1, e2 = �1 and as usual the gamma
matrices in 2D are �µ = (�z,�y,�x), moreover  ̄i = �0 

†
i . The emergent

self-generated U(1) gauge field Aµ ⇠ z↵@µz↵ accounts for the h/s gauge
symmetry.

Now we turn to the spinons, referring to the action in Eq. (5.50) it is
particularly useful to rewrite b⇤j↵�↵�bj� separating the ferromagnetic and
anti-ferromagnetic degrees of freedom

b⇤j↵�↵�bj� ⇠ ⌦j + (�1)|j|✏Lj (5.61)

where ✏ is the lattice constant, with the constraints ⌦2
j = f . 1 and ⌦ ·L = 0.

It is also convenient to Taylor expand the phase factor appearing in the link
variable in Eq. (5.53), owing to the slow-varying nature of the V̄ field for low
doping concentrations:

e�i
R

hiji V̄
z ⇡ 1 + ✏(�iV̄z(j)) +

✏2

2
✏(�iV̄z(j))

2 + O(✏3) . (5.62)



102 A gauge approach to cuprates

We use this approximation in the effective spinon action in Eq. (5.50),
rewriting it in terms of ⌦ and L; after the integration of the ferromagnetic
part L the low-energy effective action in the continuum limit reads:

Ss '
Z

d3x
1

g
[(@0⌦)2 + v2

s(@µ⌦)2 + ⌦

2(V̄z)
2] (5.63)

with g = 8✏2/J̃ and vs = J̃✏. Rewriting ⌦ in the CP 1 form as

⌦ = z⇤j↵�↵�zj� (5.64)

we introduce the complex boson field z, z⇤, with the constraint z⇤j↵zj↵ = f .
Comparing Eq. (5.61) and Eq. (5.61) it is clear that this new field corresponds
to the spinon field b, b⇤ after the ferromagnetic degrees of freedom have been
integrated out; for this reason from now on when speaking of spinons we will
always refer to the new fields z↵, z⇤↵. Averaging the field V one can obtain
through a Sine-Gordon transformation [200, 204] the effective spinon mass

m2
s = hV̄ 2

z i ⇠ 1

2
|� ln �| (5.65)

which, finally, enters the effective action for spinons:
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i
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(5.66)
which is essentially a non-linear � model with doping-dependent mass ms.
As in the holon case the emergent U(1) gauge field Aµ ⇠ z↵@µz↵ is minimally
coupled as a consequence of the h/s gauge symmetry.

The effective actions in Eq. (5.60) and Eq. (5.66) describe the dynamics
of holons and spinons; in the next Subsections we shall analyze the pairing
processes for holon, spinons and finally the superconductive transition.

5.2.5 Holon pairing

The pairing between holons is indirect, being mediated by the spin-vortices
surrounding each holon site. To understand the mechanism one may start
from the J term as in Eq. (5.56) in the continuum limit, expanding the
RV B factors to the second order and introducing the z↵, z⇤↵ field as before,
obtaining

J̃

Z

d2x(V̄z(x))2z⇤↵(x)z↵(x) (5.67)

with J̃ = (1 � 2�)J . Averaging over the spinons and introducing the effective
interaction Jeff ⌘ J̃hz⇤zi and plugging in the expression for V̄ in Eq. (5.48)
we get

Jeff
X

i,j

(�1)|i|+|j|��1(i � j)h⇤
i hih

⇤
jhj (5.68)
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� being the 2D lattice Laplacian. It is important noting that the sum is
not constrained over nearest neighbors, so that the term above describes a
long-range interaction between holons, which turns out to be attractive if
they are on different Nèel sublattices, repulsive otherwise.

As the interaction is mediated by the field V , one may visualize the
mechanism by considering spin vortices, described by the V field, centered
on each holon site, with chirality depending upon the Nèel sublattice they
are in. Eq. (5.68) shows that these spin vortices attract each other if they
are on different sublattices, otherwise they repel each other. The effective
coupling Jeff is obtained through a statistical average over the spinons:

Jeff = J̃hz⇤zi = J̃

Z

d2q(q2 + m2
s)

�1/2 = J(1 � 2�)(
p

⇤2 + m2
s � ms) (5.69)

⇤ ⇠ 1 being an ultra-violet cutoff. Instead of exactly treating the interaction
provided by the term in Eq. (5.68) one may give a simplified, effective
description by introducing a Coulomb potential with a screening length `s
equal to the average holon distance `s ⇠ 1/

p
�

Veff(p) ⇡ Jeff

p2 + `�2
s

, (5.70)

considering only the attractive part. Within this approximation the pairing
temperature for holon Tph can be estimated as

Tph ⇡ Jeff

2⇡
(5.71)

under which a finite density of incoherent holon pairs appears, i.e. h|h⇤
i h

⇤
j |i 6=

0, due to a Kosterlitz-Thouless-like transition.
Again the lattice periodicity complicates the holon treatment, which

is to be split in different regions of the Brillouin zone, and the coupling
between different regions is subleading and can be neglected [205]. The
correct treatment of holon pairing allows one to recover the correct d-wave
symmetry of the order parameter as observed experimentally and to correctly
reproduce the Fermi arcs as observed in ARPES data [5, 183, 184].

For brevity’s sake here we just report the gap equation, which can be
obtained through the standard BCS treatment of the theory

�h
↵,k =

X

q

Veff (k � q)
�h
↵,q

2✏↵,q
tanh

⇣✏↵,q

2T

⌘

(5.72)

where ↵ = R, L is a “flavor” index, corresponding to the two branches of the
Fermi surface where R (L) stands, respectively for the right (left) region of the
magnetic Brillouin zone, i.e. for the right region �⇡  kx  ⇡, 0  ky  ⇡;
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for more details see for instance Ref. [206]. In first approximation the R and
L “flavors” are considered as fully decoupled. The dispersion relation is

✏↵,k =
q

(vF k ± µ)2 + |�h
↵,k|2 (5.73)

µ being the chemical potential for holons, vF = 2t being the Fermi energy
for holons. The solution of the gap equation shows a pronounced peak at
k = kF , defining �h

0 =
�

��h(k = kF )
�

� it can be approximated within very
good agreement by the following fit:

�h
0 = `Z(�)

p
� exp

✓

� 5J

4˜̀Z(�)

◆

(5.74)

with v� =
p

2�h
0/kF , ` being the holon screening length and

Z(�) = vshz⇤zi = vs

p

⇤2 + m2
s � ms . (5.75)

The phase of the holon order parameter �h has been neglected due to the
BCS treatment. It can be reintroduced in approximation for the full holon
Hamiltonian, valid at low energies in the vicinity of the four nodal points.
The h/s symmetry is restored by Peierls substitution, leading to the following
nodal Hamiltonian for the R holons

Hh =

 

vF (�i@+ � A+) + A0 �v�ei�h

@�
v�e�i�h

@� vF (i@+ � A+) � A0

!

(5.76)

5.2.6 Spinon pairing

In order to understand the origin of the attractive interaction for spinons we
consider the four-fermion interaction in the J term in Eq. (5.56):

J

2

X

hiji

h⇤
i hih

⇤
jhj |RV Bij |2 . (5.77)

This term can be neglected in the normal state, where hh⇤
i hih⇤

jhji ⇡ �2;
moreover being J > 0 in our approach it provides a repulsive spinon-spinon
interaction. In the present Subsection we show that, as opposed to the normal
state, for a sufficiently high density of incoherent holons the energy of the
system is actually lowered when two holon pair in an RVB state, due to the
increasing h/s gauge attraction between holons and spinons, forcing the hole
to recombine. This mechanism provides an indirect attractive force for the
spinon-spinon pairing. We apply the usual Hubbard-Stratonovich [189, 190]
transformation to the term in Eq. (5.77), obtaining

�
X

hiji

2|�s
ij |2

J⌧2
+�s⇤

ij ✏
↵�zi↵zj� + h.c. (5.78)
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and the holons have been treated in mean-field approximation, defining
⌧ = |hhihji|. On the other hand the spinon order parameter is defined as:

�s
ij =

J⌧2

2
h✏↵�zi↵zj�i . (5.79)

Including the pairing term the full action for spinons can be written as
Ss =

R

d3xL and the (Euclidean) Lagrangian density now reads9:

Ls =
X

µ=0,1,2

z⇤↵
⇥

(@µ � iAµ) + m2
s

⇤

z↵ +�s⇤
i (x)✏↵�z↵@iz� + h.c. (5.80)

The order parameter has been rewritten as �s⇤
i (x) where the index i denotes

the spatial direction; moreover it can be rewritten in an approximate way
separating the phase and amplitude parts as

�s
i (x) ' �s

i,0e
i�s(x) (5.81)

where the spinon phase �s depends on the spatial position only and the
amplitude �s

i,0 depends on the spatial direction only. We stress that the
self-emergent gauge field Aµ ⇠ z�@µz� as a result of the h/s symmetry has
been introduced in Eq. (5.80). In fact the h/s gauge symmetry is still present,
the action being invariant under the following set of transformations:

8

>

<

>

:

z↵ �! z↵ei⇤

Aµ �! Aµ + @µ⇤

�s �! �s + 2⇤

⇤(x) 2 [0, 2⇡[ (5.82)

provided that also the holon sector is transformed as follows
(

h �! hei⇤

�h �! �h + 2⇤
⇤(x) 2 [0, 2⇡[ (5.83)

Wanting to work with fields neutral under the h/s gauge transformations, we
redefine the spinon field as

z̃1 ⌘ z1e
i�s

z̃2 ⌘ z⇤2e
�i�s

. (5.84)

We can also introduce a gauge-neutral version of the h/s gauge field and,
to complete our description in terms of h/s gauge invariant quantities, we
introduce the electron phase �:

aµ = Aµ � 1

2
@µ�

h � = �h � �s (5.85)

9Temporarily setting g = 1 and v
s

= 1.
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The effective action can be rewritten in terms of the new gauge-invariant
quantities just introduced and has the following (Euclidean) Lagrangian
density:

Ls = Z† (x)�s (x) Z (x) (5.86)

having defined the doublet Z = (z̃1, z̃2)
T and the 2 ⇥ 2 kernel10:

�s =
X

µ=0,1,2

⇥

@µ � i (aµ � 1/2@µ�)�z � i Im
�

�s
µ,0

�

�x � i Re
�

�s
µ,0

�

�y

⇤2
+m2

s�
�

��s
µ,0

�

�

2

(5.87)
Our goal is to understand the physics leading to spinon pairing and to a

finite density of incoherent spinon RVB pairs; in order to do so it convenient
to rewrite the kernel �s introducing a fictitious SU(2) gauge field Yµ

�s =
X

µ=0,1,2

(@µ � iYµ)2 + M2 (5.88)

with M ⌘
q

m2
s � 2 |�s

0|
2, Yµ =

P

a=x,y,z Y a
µ �a/2 and

Y a
µ =

0

@

0 0 a0 + @0�
Im
�

�s
1,0

�

Re
�

�s
1,0

�

a1 + 1
2@1�

Im
�

�s
2,0

�

Re
�

�s
2,0

�

a2 + 1
2@2�

1

A (5.89)

Integrating out the spinons one gets the following effective action

Ss
eff [aµ,�s

0, @µ�] = ln det (�s) � 2 |�s
0|2

J⌧2
(5.90)

which can be treated in an approximate way, in particular we Taylor-expand
Seff in powers of the gauge field, while treating �s exactly:

Ss
eff ⇡ Ss,0

eff [0, 0,�s] + Ss,2
eff [@µ�, aµ,�s] + ... (5.91)

Using an established approach [44, 207] we first determine the saddle point
value for the modulus of order parameter, subsequently considering the role of
the phase fluctuations. Neglecting the phase and the gauge field is tantamount
to considering only the first term in the expansion in Eq. (5.91), it reads:

Ss,0
eff = �2 |�s

0|2
J⌧2

+
X

!,k

ln
⇥�

!2 + E2
� (k)

� �

!2 + E2
+ (k)

�⇤

(5.92)

and describes the physics of a gas of spinons with the following peculiar
dispersion relation

E± (k) =
q

k

2 + m2
s ± 2 |�s

0| |k| . (5.93)

10The 0 component of the order parameter is �s

0,0 = 0.
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On the other hand the second term in the expansion, i.e. the phase-gauge
part is essentially a three-dimensional anisotropic gauged XY (Stueckelberg)
model, Ss,2

eff =
R

d3xL s,2
eff with

L s,2
eff =

1

6⇡M
{[@µa⌫ � @⌫aµ]2 + |�s

0|2[2(a0 + @0
�

2
)2 + (a + r�

2
)2]} (5.94)

Now a complete treatment for the gap equation would require finding the sad-
dle point value for the complete action Ss

eff [a,�s
0] = Ss,0

eff [�s
0] + Ss,2

eff [a,�s
0] +

Sh
eff [a], the last term coming from the holon nodal description in Eq. (5.76).

However, it turns out that the holon contribution to spinon pairing is sublead-
ing [5]. The partition function Zg =

R

Daµ exp
⇣

�Ss,2
eff

⌘

for the anisotropic
gauged 3D XY model can be integrated, after finally fixing the h/s symmetry,
to give:

Zg =
Y

!,k

(3⇡M)
3/2

(!2 + 1
2 |�s

0| + 1
2 |k|2)1/2(!2 + 1

2 |�s
0| + |k|2)1/2

(5.95)

The contribution from the partition function Zg is accounted for only in
an approximate way into the gap equation; in fact it turns out that the factor
appearing at the denominator, corresponding to the vector bosons degrees of
freedom, give subleading contributions. The (3⇡M)3/2, on the other hand,
enters the gap equation in a fundamentally important way, and is actually
needed in order to achieve pairing, confirming the necessity of the gauge part
of the theory contained in Ss,2

eff in order to obtain spinon pairing. Motivated
by this scenario we write the free energy as the sum of the free energy F
from the Ss,0

eff plus the contribution from the M term:

1

V
F [�s

0] ⇡ 1

�V

X

!,k,�=±
ln
�

!2 + E2
� (k)

�

� 3⇤3

4

"

ln m2
s � 2 |�s

0|2
m2

s

#

�⇤2 |�s
0|2

J⌧2

(5.96)
⇤ being an ultraviolet cutoff. Deriving with respect to �s

0 one gets the gap
equation

0 =
2⇤

3m2
s

� ⇤2

J⌧2
� 1

2 |�s
0| V

X

k

2

4

|k|
E� (k) tanh

⇣

E�(k)
2T

⌘ � |k|
E+ (k) tanh

⇣

E+(k)
2T

⌘

3

5 .

(5.97)
A numerical analysis of Eq. (5.97) shows that there is no solution for ⌧ = 0,
i.e. when a finite density of incoherent holon is not present. Similarly, if we
do not account for the gauge interaction, i.e. without the first term coming
from the M gauge term, the gap equation does not have a solution for finite
values of |�s

0|, in agreement with the fact that the interaction in the present
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treatment is essentially repulsive and the actual pairing glue is provided by
the gauge interaction overcoming the original repulsion.

In particular Eq. (5.97) determines a temperature Tps . Tph below which
a finite density of spinon RVB pairs, and hence a finite density of hole pairs,
is to be found. It has been noted that such a state should support a Nernst
signal and it has been shown, in fact, that Tps calculated within the present
formalism as a function the doping shows good agreement with experimental
data [5] for the onset of the Nernst signal [208].

Figure 5.4: Indirect spinon pairing potential: holons on different Nèel sublat-
tices experience an attractive force due to the attractive interaction (solid line)
of opposite chirality spin vortices; subsequently the h/s gauge interaction
(wavy line) binds spinons and holons together. This is the mechanism for
superconductivity in the present approach; as far as spinons are concerned it
can be seen as an effective indirect (holon-mediated) spinon-spinon potential.

5.2.7 Superconductivity and phase diagram

Let us “recombine the electron”, introducing the order parameter for the
electron

�c
ij = h✏↵�ci↵cj�i = h✏↵�zi↵zj�ihh⇤

i h
⇤
j i (5.98)

In terms of the holon and spinon order parameters11 it reads [5]:

�c ⇠ �s

�h
=
�s

0

�h
0

ei(�h��s) . (5.99)

From Eq. (5.99) one readily concludes that even when a finite density of
holons and spinons and hence of hole pairs is present, the superconductivity
may still be destroyed by a highly fluctuating phase, i.e. hei�i = 0, if

11Here �
s

= �s

0e
i�s and �

s

= �h

0e
i�h .
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the gauged XY model in equation (5.94) is in the high-temperature vortex
proliferation phase. On the other hand when the gauged XY model enters
the low-temperature phase the phase stabilizes and finally �c 6= 0. However
the “temperature” governing the transition is not the physical temperature
T ; the effective temperature, as can be read e.g. from Eq. (5.94), is given
by the coupling constant of the gauged XY model, approximately inversely
proportional to the modulus of the spinon order parameter |�s

0|.

Figure 5.5: Left panel: theoretical prediction for the phase diagram: Tps (red
line) corresponds to the onset of the Nernst signal, while the blue line marks
the superconductive transition. Right panel: critical temperature and onset
of the Nernst signal as experimentally measured in La2�xSrxCu2O4, taken
from Ref. [209].

A more detailed analysis of the dynamics of the gauged XY model will
be given in the next Section when discussing the superfluid density; here
we briefly comment on the mechanism: |�s

0| will acquire a non-zero value
at Tps, corresponding to an infinite effective temperature for the gauge XY
model. Decreasing the temperature the spinon order parameter |�s

0| grows
and the effective temperature lowers; critically the effective temperature is
a monotonically increasing function of the physical temperature. Finally
one reaches the low-temperature phase for the XY model, marking the
superconducting transition and the critical temperature Tc. The critical
temperature is plotted in Fig. 5.5 as a function of the doping, shown good
agreement with experimental data.

In conclusion we note that the pictorial representation of holon pairing,
as a process mediated by the attraction of spin vortices on different Nèel
sublattices can be extended to describe the full superconducting transition. A
finite density of incoherent spinon pair appears provided that ⌧ is sufficiently
big, i.e. the spinon attractive potential is mediated by the holons. Moreover
coherence is achieved through the action of the h/s gauge field Aµ, which is
introduced when splitting the holon into the product of a holon and a spinon
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and, finally, plays a key role in reconstructing the hole. Denoting the gauge
field by a wavy line the pairing mechanism can be depicted as in Fig. 5.4.

5.3 A gauge approach to superfluid density

The superfluid density can be defined, following for instance Ref. [210], as the
coefficient governing the Gaussian fluctuations of the phase � in an effective
action for superconductivity12:

Seff =
⇢s

2

Z

dV (r�)2 + (other terms) , (5.100)

which by gauge invariance is equivalent to

Seff =

Z

dV
h⇢s

2
A

2
em (⌧, r) + (other terms)

i

. (5.101)

i.e. the mass of the electromagnetic field13 Aem
µ below Tc due to the Anderson-

Higgs mechanism, and as a consequence of that it also is related to the London
penetration depth � of a magnetic field in a superconductor [36]:

� =

r

m

µ0⇢se2
, (5.102)

e and m being the charge and the mass, respectively, of each charge carrier,
µ0 being the vacuum permeability. Experimental measurements of superfluid
density are generally obtained indirectly through the measurement of the
London penetration depth; Refs. [211, 212] provide an extensive review of
experimental techniques and of ways of measuring superfluid density.

The London penetration depth is the distance the perpendicular compo-
nent of an external magnetic field can travel inside a superconductor before
being reduced by a factor 1/e as a result of the Meissner effect, in formulas:

B?(x) = B0 exp
⇣

�x

�

⌘

, (5.103)

B0 being the modulus of the magnetic field at the edge of the superconductor,
x being a coordinate normal to the surface. Usually the penetration depth is
microscopical, e.g. hundreds of nanometer in the case of cuprates, so that
commonly the Meissner effect is described as a bulk superconductor effectively
expelling a magnetic field.

12Some ambiguity in literature arises by calling superfluid density both the superfluid
(mass) density defined above and the superfluid (number) density n

s

= 2m⇢
s

; here we will
always refer to the former quantity, unless otherwise specified.

13The “em” superscript is needed to distinguish the electromagnetic field from the A
µ

,
generated by the h/s symmetry.
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Coming to cuprates, the superfluid density is easily experimentally accessi-
ble and has been the object of a great number of experimental investigations;
the superfluid density profile is characterized by a dichotomy appearing in
many other experimental features of cuprates. The linear T -dependence at
low temperatures is consistent with BCS-like dynamics for the holes and with
the well-defined gapped Fermi-arcs observed through ARPES spectroscopy
[213], while, on the other hand, the non-mean-field critical exponent for
the superfluid density 2/3 is at odds with a BCS-like description, and would
suggest that cuprates should lie in the 3DXY universality class [214–216].
Fig. 5.6 sketches the different behaviors of the superfluid density in cuprates
(solid line) as compared to the usual BCS-like superfluid density (dashed
line). Finally the Uemura [217] relation, i.e. that empirical observation that

⇢s(T = 0) / Tc (5.104)

for moderate underdopings is, again, in contrast with a BCS-like description
of the dynamics of cuprates.

The gauge approach to cuprates used in the present work provides a
natural solution to this puzzle [7]: as shown previously the hole is decom-
posed into a charge-only fermionic excitation (holon) and a spin-only bosonic
excitation (spinon). We are going to show that they give separate contribu-
tions (⇢h

s and ⇢s
s) to the superfluid density, and that these contributions sum

according to a Ioffe-Larkin-like composition rule: in the vicinity of the critical
temperature the spinon contribution dominates, giving the correct critical
exponent, while at low temperature the holon contribution is fundamental
in reproducing the correct slope. An interplay of the holonic d-wave BCS
contribution and the spinonic 3DXY contribution naturally accounts for all
the experimentally-observed features in the whole range of temperatures
0 < T < Tc and reproduces the superfluid density profile in the underdoping
regime within very good accuracy [7]. We stress that the 3D nature of the
XY model is not a consequence of inter-layer coupling. Finally we derive
analytically an approximate Uemura relation.

5.3.1 Composition rule for superfluid density

We recall the definition of superfluid density in Eq. (5.100), i.e. the coef-
ficient governing the Gaussian phase fluctuations in an effective action for
superconductivity; the relevant Lagrangian in this case can be read from Eq.
(5.94), to which we must also couple to electromagnetic field Aem

µ . The h/s
gauge invariance allows one to do so in many equivalent ways, in fact it can
be shown that any choice of ✏ in the following coupling to the electromagnetic
field

Ss(A + ✏Aem) + Sh(A � (1 � ✏)Aem) (5.105)

is indeed equivalent [218] to any other choice of ✏ by h/s invariance. In the
present work we choose to couple the electromagnetic field to the holons, i.e.
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Fig. 7.9 The form of the relative superfluid density as a function of temperature for a BCS
superconductor (pecked line) and for a typical cuprate (solid line) (qualitative).

same level of doping. Recall that ��2
ab measures the 3D superfluid density; thus if the

hypothesis of universality is correct, one would expect the relation

�2
ab(0)

d̄
= const. (7.6.1)

to hold, where d̄ is the average distance between CuO2 planes. While the microwave
data alone are hardly su�cient to test this hypothesis, we can try to compare the
values inferred from µSR (Uemura et al. 1989); ratios may be hoped to be given by
this technique more reliably than absolute values. The data of Uemura et al. (op. cit.)
appear compatible with the hypothesis as regards the higher-Tc materials, i.e. the ratio
is the same22 within the error bars for optimally doped T l-2223 and (near)-optimally
doped YBCO, and if we take the a-axis value for the latter from the microwave data
the constant comes out to be near 5⇥ 105 Å. For LSCO the number is quite di�erent,
about a factor of 2 larger.

The data of Uemura et al. were actually presented as evidence of an intriguing cor-
relation between ��2

ab (0) and the transition temperature Tc; for doping below optimal
the relationship, for the nine di�erent systems measured, appears to be rather con-
vincingly linear. However, their Fig. 2 also shows that the increase of ��2

ab (0) with
doping persists beyond the maximum in Tc.

One may ask how well the data fit a näıve picture, in which the superfluid density
per plane is simply expressed as ne2µ0/m�, where n is the number of carriers per unit
area and m� (⇠4 m) the e�ective mass inferred from the specific heat measurements,
so that the quantity ��2

ab (0) is n3De2µ0/m�. For optimally doped YBCO, n3D
⇠= pe� ⇥

1.1 ⇥ 1022 cm�3, where pe� is the e�ective number of carriers per CuO2 unit (see
below), and the quantity ��2

ab (0) is therefore approximately 1.5pe�(m/m�) 10�6 Å�2.

22Actually, the values of d̄ and ��2
ab

(0) separately are closely similar for the two materials, but this
is not particularly significant since the multilayering structure is di�erent.

Figure 5.6: A sketch of the superfluid density in a BCS superconductor
(dashed line) and in cuprates (solid line). The zero-temperature value of the
superfluid density is normalized to 1, as well as the critical temperature. The
different low-temperature behavior and the different critical exponent are
evident. From [13].

✏ = 0; starting from the Lagrangian in Eq. (5.94) and using the Eqs. (5.85)
we get

L em =
1

6⇡M

n

f2
µ⌫ + |�s

0|2 ⌘µ⌫(Aµ � @µ
�s

2
)(A⌫ � @⌫

�s

2
)
o

+

+ (aµ � Aem
µ )⇧µ⌫

h (a⌫ � Aem
⌫ ) (5.106)

having straightforwardly introduced the field strength fµ⌫ = @[µa⌫] and the
pseudo-metric ⌘µ⌫ = diag(2, 2, 1). The last term in the r.h.s. in Eq. (5.106)
accounts for the holonic contribution to the phase-gauge Langragian, ⇧µ⌫

h

being the vacuum polarization of the holons in the low energy limit. We
neglected this term when deriving the spinon gap equation; it will turn out
to be quite important as far as the superfluid density is concerned.

When writing down the partition function as

Z ⇠
Z

DAµD�sD�he�
R

d3xL em[A
µ

,�
s

,�
s

] (5.107)

it must be noted that the integration using the measure DAµD�sD�h wrongly
integrates over configurations belonging to the same gauge orbit, so that
a gauge fixing is needed [5]. In this case it is particularly convenient to
introduce a new variable �> = �h+�s

2 , performing a change of variables in
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the definition of the partition function14:

Z ⇠
Z

DaµD�D�>e�
R

d3xL em[a
µ

,�] (5.108)

which is now expressed in terms of �> and the physical electron phase � =
�h��s

2 . The gauge is then fully fixed by choosing the function F = �> �! (x)
as the gauge condition, using the usual Faddeev-Popov procedure [219]; as
the Lagrangian, critically, does not depend on �> when expressed in terms
of the new integration variables, it maintains the same form after the gauge
fixing, and the integration over D�> factors out along with the divergency.

It is then straightforward to integrate out the � and aµ fields, in this order,
obtaining an effective Lagrangian for superconductivity up to subleading
O
�

|�0
s|4
�

terms:

Lem,eff =
1

4
Aem

µ

"

Kµ↵⇧�⌫h

K↵� +⇧↵�h

#

Aem
⌫ , (5.109)

and Kµ⌫ = (3⇡M)�1(@µ@⌫ � @2gµ⌫ + mµ⌫) appears as AµKµ⌫A⌫ in the
spinon part of the effective Lagrangian and can be obtained from Eq. (5.106)
integrating by parts.

By noting that Kµ⌫ (⇧µ⌫
h ) is a gauge invariant quantity on its own, and

that it corresponds to the total superfluid density of the system when the
holonic (spinonic) sector is neglected, the static limit of Kµ⌫ and ⇧µ⌫

h can be
readily identified as the spinonic and holonic, respectively, contributions to
the total superfluid density. They sum in the following peculiar way15:

⇢s =
⇢s

s⇢
h
s

⇢s
s + ⇢h

s

(5.110)

where obviously ⇢h
s denotes the superfluid density from the holon subsector

and ⇢s
s the superfluid density from the spinon subsector. The most evident

consequence of the equation above is that the zero of the superfluid density is
determined by the smallest among ⇢s

s and ⇢h
s . It is also remarkable that the

formula in Eq. (5.110) has the same structure of the Ioffe-Larkin composition
rule [220] meaning that in an spin-charge separated approach superfluid
densities sum in the same way as conductivities do [173].

5.3.2 Superfluid density from spinons

As clear from the effective action in Eq. (5.94) the dynamics of the spinon
phase are described by a gauged anisotropic 3D XY model. We preliminarily

14We omit the Jacobian factor which is an overall multiplicative constant in the partition
function.

15We also used the isotropy in the (true) spatial directions so that the coefficient to
Aem

i

Ai

em is be the same for i = 1, 2.
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note, see for instance [221], that for a bosonic system the superfluid density
can be defined in terms of the phase stiffness Y, i.e. the leading order free
energy increase when the phase of the system is infinitesimally twisted:

F (� ! �+ Qµxµ) ⇡ F (�) +
1

2
Y |Q|2 + O

�

|Q|4
�

(5.111)

and the superfluid density is related to the phase stiffness [221] by:

⇢s =
1

b

m2

~2
Y (5.112)

b being the layer spacing along the c axis. Preliminarly we need to show that
the gauge field in Eq. (5.94) does not yield relevant contributions to the free
energy and, consequently, to the superfluid density, which will then be the
one of a an anisotropic three-dimensional XY model. In order to do so it
is convenient to choose a different gauge fixing, decoupling the gauge and
phase parts of the Lagrangian; after performing the usual Faddeev-Popov
procedure, using as gauge-fixing function:

F =
1

⇠
mµ⌫ (@µA⌫)�

s � ⇠

2
�s � ! (x) (5.113)

where ⇠ is a real parameter, the partition function reads:

Z =

Z

DAµD�se�S[A
µ

]e�S[�s] (5.114)

with

S[Aµ] =

Z

d3xAµ

�@2gµ⌫ + @µ@⌫ + mµ⌫ � 1
⇠2

mµµ0
m⌫⌫0

@µ0@⌫0

3⇡M
A⌫ (5.115)

and

S[�s] =
1

12⇡M

Z

d3x�s

 

� |�s
0|2
2

⌘µ⌫@µ@⌫ +
⇠2

2

!

�s . (5.116)

The Aµ and �s fields are now decoupled, so that the partition function factors
as Z = ZA

µ

Z�s . Taking the ⇠ ! 0 limit (Landau gauge) the mass term in
the phase part disappears, at the expense of introducing an arbitrarily large
⇠�2mµµ0

m⌫⌫0
@µ0@⌫0 term in the gauge part. It can shown by direct calculation

[170] that the contribution to the superfluid density from the gauge part is
proportional to |�s

0|4 and bounded from above for every value of the gauge
parameter ⇠; on the other hand the leading term contribution to superfluid
density from the phase part is proportional to |�s

0|2, its order of magnitude
being fixed by the XY coupling constant, allowing us to retain only the phase
part S[�s], up to a good approximation16, also confirmed by numerics [170].

16For typical values of
���0

s

��2 the subleading contribution is at least two orders of
magnitude smaller than the leading term.
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In other words the superfluid density for the system is essentially deter-
mined by a three-dimensional XY model, defined by the following (Euclidean)
Lagrangian:

LXY =
|�s

0|2
6⇡M

⌘µ⌫@µ
�s

2
@⌫
�s

2
(5.117)

It is important noting that the imaginary time component now plays the same
role as the two spatial components, and that the effective inverse temperature

⇥�1 =
|�s

0|2
3⇡M

(5.118)

plays the role of the physical inverse temperature �. The behavior of the model
is not altered from a qualitative point of view, because ⇥�1 is a monotonically
decreasing function of the temperature as is �: the low-temperature and
high-temperature phases of the 3DXY model are not mixed or switched,
however the transition between the two is now determined by |�s

0|2 as a
function of temperature. We can give an estimate for the critical value |�s

0|2c
as follows, by writing down the condition for which the system is at the
critical point:

⇥ (T ) = T 3DXY
c (5.119)

with T 3DXY
c ⇡ 2.20, as given in Ref. [222], the solution being:

|�s
0|2c = m2

s



1 � ms

24⇡T 3DXY
c

�

(5.120)

neglecting higher order corrections at least two orders of magnitude smaller
than the leading term. It is clear that the properties of the spinon contribution
to superfluid density are mediated by the effective temperature: ⇥ goes to
zero as T goes to zero, as a consequence of the structure of the spinon gap
equation in Eq. (5.97); also ⇥ (T ) is differentiable and non-singular at Tc so
that the critical exponent of the three-dimensional XY model is preserved,
i.e.:

⇢s
s ⇠

�

�

�

�

T � Tc

Tc

�

�

�

�

2
3

(5.121)

as T �! Tc. From the theory of the XY model [223] we also know that at
low temperatures the following relationship holds:

Y = J � 1

4�
+ O

✓

1

�2J

◆

T!0���! J (5.122)

�J being the XY coupling constant, so that combining it with Eq. (5.112)
we get the following formula for the zero-temperature superfluid density:

⇢s
s(0) ⇡ ⇠



d⇥

dT
(0)

��1

(5.123)
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with a scale renormalization ⇠ accounting for short-distance effects. The
finite-temperature behaviour is then obtained from the theory of the 3DXY
model [224], i.e.

⇢s
s(T ) = ⇢s

s(0)⇢XY

✓

⇥(T )

⇥(Tc)

◆

, (5.124)

where ⇢XY is the spin stiffness of an anisotropic 3D XY model, which has
been obtained through a Monte Carlo simulation, using the cluster update
algorithm proposed in Ref. [225] to speed up the thermalization, particularly
near the critical point.

5.3.3 Superfluid density from holons

The holon dynamics below Tc is essentially that of a d-wave condensate of
fermions; an expression for the superfluid density can be derived in BCS
approximation [226, 227], considering the two Fermi surfaces for holons in
the present context it reads

⇢h
s (T ) =

2✏F
⇡

✓

1 � log(2)

2�h
T

◆

(5.125)

✏F being the Fermi energy for holons and �h being the modulus of the order
parameter. We note that being Tph � Tc the holon contribution can be
deemed, in first approximation, as constant in the pseudogap region. However
the temperature dependence of the holon order parameter turns out to be
very important when Tph gets closer to Tc, i.e. in the strange metal region.
The temperature dependence is also needed in order to correctly determine
Tps.

5.3.4 Comparison with experimental data

Finally we can sum the spinonic and holonic contributions to superfluid
density in Eq. (5.124) and in Eq. (5.125) according to the Ioffe-Larkin-like
composition rule in Eq. (5.110), obtaining a result we can compare with
experimental data. We preliminary observe that the spinonic contribution
to the superfluid density goes to zero at Tc, while the holon contribution is
zero at Tph & Tc; consequently the total superfluid density will go to zero at
Tc, as a consequence of the composition rule and, as already mentioned, the
critical exponent and the properties near the transition will be that of the
spinonic part of the theory, i.e. in the proximity of Tc the total superfluid
density will be

⇢s ⇠
�

�

�

�

T � Tc

Tc

�

�

�

�

2
3

. (5.126)

The equation above is in agreement with the experimental observation that
the critical transition in cuprates is in the 3D XY universality class [214–
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216]. Moreover it turns out that the majority of the temperature profile is
dominated by the contribution from spinons, except for the a small region a
low temperature, where the holonic contribution is important, for instance,
in determining the first derivative in zero.

Figure 5.7: Normalized superfluid density, as a function of the normalized
temperature, compared with experimental data from Refs. [228–231]

.

In Fig. 5.7 we report our results [7] for the normalized superfluid density

⇢s(
T
T

c

)

⇢s(T = 0)
. (5.127)

Our theoretical prediction is compared with the following experimental mea-
surements:

• YBCO, a-axis (red squares), over a wide range of dopings [212, 228,
229, 232].

• Nearly optimally doped BSSCO (yellow triangles), as reported in Ref.
[230].

• Underdoped LSCO (� = 0.075, blue circles), as reported in Ref. in
[231].

showing good agreement in the whole temperature range up to the critical
temperature.
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We note data Hg-1201 data from Ref. [231], is also fitted reasonably
well in the underdoped regime. On the other hand data from b-axis YBCO
[229], not shown, is correctly fitted only up to slight underdopings; at optimal
doping and beyond we conjecture that the effect of the chains, and the
consequent YBCO a � b anisotropy, ruins the agreement.

The authors in Ref. [231] comment that the superfluid density results in
the vicinity of the critical point may be affected by doping inhomogeneities
fluctuations; in fact LSCO and BSSCO data deviate from the usual critical
exponent behavior near the transition; in order to account for this effect we
identified an inflection point in the superfluid density profile in experimental
data and we fitted the data only up to that point. The procedure allows for
a very good agreement between experimental data and theory.

We stress that, besides the �, T -independent scale renormalization ⇠, our
theory has no other free parameter, all other quantities being fixed for the
pseudogap region by a comparison with the phase diagram, as in [5].

To conclude, it has been observed [229] in YBCO samples that the
normalized superfluid density should be nearly-universal as the doping is
modified. This feature is reproduced by the present model in a in a wide range
of dopings, in Fig. 5.8 we analyzed this experimental feature for � = 0.08,
� = 0.12 and � = 0.16.

Figure 5.8: Doping near-universality: the normalized superfluid density as a
function of the normalized temperature shows near-universal behavior in the
underdoped regime.
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5.3.5 The Uemura relation

In the present Subsection we demonstrate that the present formalism allows
for the derivation of an approximate Uemura relation valid in the underdoped
regime. As�s is the solution of the gap equation in Eq. (5.97), its temperature
dependence is naturally written in term of T/Tps, furthermore it is convenient
writing

�2
s = m2

sF (T/Tps) (5.128)

for an opportune function F . Numerics prove that the function F has some
important features:

• F (0) ⇡ 1; this is equivalent as requiring �s(T = 0) ⇡ ms and is indeed
a consequence of the structure of the spinon gap equation.

• The dependence of F upon the doping is very feeble so that it can be
considered �-universal in first approximation.

• F (1) = 0, a trivial consequence of the parameterization chosen for the
temperature and of the definition of Tps.

All these properties can be verified “visually” in the panel in the lower right
in Fig. 5.9, showing F for three different doping choices. The properties in
fact hold over a very wide doping range, except for the limit doping values
where the superconductive dome meets the x axis and Tc tends to zero.

The effective temperature ⇥, as defined in Eq. (5.118), can now be
rewritten in terms of F as

⇥(T ) =
3⇡

ms

1 � F (T/Tps)

F (T/Tps)
(5.129)

and consequently one can rewrite the spinon contribution to the superfluid
density as in (5.123), which happens to be the dominating contribution, as:

⇢s
s(0) ⇡ ⇠msTpsF (0)2

3⇡|F 0(0)| . (5.130)

The criticality condition can be found by setting the effective temperature
equal to the critical temperature of the three-dimensional XY model ⇥(Tc) ⌘
TXY

c ⇡ 2.20 [222]. A linear expansion of F yields:

Tc ⇡ Tps

|F 0(0)|
F (0) � 1 + F (0)msTXY

c /(3⇡)

1 + msTXY
c /(3⇡)

(5.131)

allowing one to easily calculate the critical temperature as a function of the
doping, which turns out to be parabolic as observed on phenomenological
grounds [13, 177], see also Eq. (5.1), see the main panel of Fig. 5.9.
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Using the property F (0) ⇡ 1, using Eq. (5.124) and the Ioffe-Larkin
composition rule we obtain:

Tc ⇡ TXY
c

⇠
⇢s(0)

1

(1 � ⇢s(0)/⇢h
s (0))(1 + msTXY

c /(3⇡))
(5.132)

which is an approximate form of the Uemura relation, once we remind that
the terms in the denominator are subleading, because msTXY

c /(3⇡) ⌧ 1 and
the holon contribution is subleading, meaning that17 ⇢h

s (0) � ⇢s
s(0).

The Uemura relation for the present formalism can also be verified graph-
ically, as in Fig.5.9, main panel. where the dashed line corresponds to our
theoretical estimate for Tc, while the solid line corresponds to the zero-
temperature superfluid density.

Finally we note that ⇥(T ) is approximately proportional to T over the
entire temperature range up to the Tc. Assuming, again, a subleading
contribution from holons, the superfluid density which is proportional to
⇢XY (⇥(T )/⇥(Tc)) is also approximately proportional to ⇢XY (T/Tc). When
combined with the Uemura relation in Eq. (5.132), this implies that

⇢s(0) ⇡ cTc , (5.133)

c being a doping-independent constant. For low temperatures one can expand
⇢s(T )/⇢s(0) at the first order in T/Tc, obtaining

⇢s(T ) � ⇢s(0) ⇡ c

✓

d⇢XY (0)

d(T/Tc)

◆

T , (5.134)

meaning the the slope of ⇢s(T ) is almost doping independent, as can be seen
in the upper right panel of Fig. 5.9. This feature has been discussed on
experimental grounds in Ref. [233].

17The Ioffe-Larkin-like composition rule counterintuitively implies that the leading
contribution should be the smaller one.
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Figure 5.9: Main panel: theoretically calculated T = 0 superfluid density
(solid line, arbitrary units) and critical temperature (dashed line) vs. �
exhibiting an approximate Uemura relation over the broad doping range
considered here. Insets, from top to bottom: approximate �-universality of
the slope of ⇢s near T = 0 (upper inset) and of F (lower inset).

5.4 Three universality classes for ⇢s

Fig. 5.7 shows that in the moderate underdoping to optimal doping region
the normalized superfluid density profile has a universal behavior; in this
Section we extend the analysis beyond the optimal doping to the overdoped
region. In order to do so in Fig. 5.10 we report the normalized superfluid
density for the following cuprates samples:

1. YBCO, a-axis, over a wide range of dopings [212, 228, 229, 232].

2. Nearly optimally doped BSSCO, as reported in Ref. [230].

3. Underdoped LSCO (� = 0.075), as reported in Ref. in [231].

4. Bi-2212, Tc = 93K, from Ref. [234].

5. Hg1223, optimally doped, Tc = 134K, from Ref. [235]

6. HgBa2CuO4+x, x = 0.154, from Ref. [231]
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7. HgBa2CuO4+x, x = 0.37, corresponding to � = 0.22, from Ref. [231].

8. Overdoped TlBa2CuO6+� from Broun et al., in Ref. [212]

9. Strongly overdoped LSCO, � = 0.24, from Ref. [231].

Figure 5.10: Three “universality classes” in normalized superfluid density as a
function of the normalized temperature. See the main text for details about
the samples analyzed.

It is possible recognizing, particularly in the vicinity of the superconduct-
ing transition, three different “universality classes”, from top to bottom in
Fig. 5.10:

• We identify the pseudogap (PG) universality class whose behavior we
have already analyzed, and compared with the present model, green
solid line. Samples: 1, 2, 3.

• We identify the strange metal (SM) universality class which seems
approximately in agreement with the standard BCS d-wave behavior of
superfluid density, shown with a solid violet line [236]. Samples: 4, 5,
6, 7.

• Finally, we identify a third universality class, which we name Fermi
liquid (FL), for samples showing a strictly linear behaviour as far as ⇢s

is concerned, up to the critical point. Samples: 8 and 9.
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Albeit we do not give a complete explanation of this observation in terms
of the present model, we do note that it could be explained quite naturally
by considering the three classes as three different coherence states of the
holon+spinon system

• The PG universality corresponds to the situation we already analyzed
in commenting Fig. 5.8.

• In the SM universality class the Ioffe-Larkin-like composition rule for
superfluid density still holds, but the holon contribution becomes more
and more relevant. The “transition” from the pseudogap to the strange
metal regime is interpreted in our formalism as the disappearance of
the ⇡-flux per plaquette; as a consequence the small Fermi surface, with
enclosed area ⇠ � become a large one with enclosed area ⇠ 1 � � and
similarly the Fermi energy ✏F ⇠ 2t� in pseudogap becomes ✏F ⇠ 2t(1+�)
in strange metal [206]. The different behavior of holons also indirectly
influences, through the ⌧2 term, the dynamics of spinons, and ongoing
work is being carried out in order to establish whether this picture
is compatible with the SM universality class we observe. We stress
that in the vicinity of Tc the critical exponent still seems to be 2/3,
confirming, within the present formalism, the Ioffe-Larkin rule. In fact a
d-wave behavior for the superfluid density profile except for the critical
region where a different critical exponent appears strongly supports a
composite approach like the present one.

• Finally the strictly linear temperature profile of the superfluid density
in the FL class could be interpreted as a breakdown of the composition
rule, as here holon and spinon are expected to be strongly bound,
behaving like an elementary excitation. Unfortunately the data does
not allow for a precise determination of the critical exponent in the FL
samples, which seems compatible both with the 3DXY one and with a
mean-field exponent.
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Conclusions and future perspectives

In Chapter 2 we discussed the BCS-BEC crossover from a historical perp-
sective, along with a brief review of its experimental realization in ultracold
Fermi gases. In Chapter 3 the mean-field theory for the crossover has been
introduced, whereas in Chapter 4 the order parameter fluctuations have been
discussed, on top of the mean-field approximation. While presenting the
general formalism a number of topics related to the BCS-BEC crossover has
been considered.

Specifically in Section 3.5 the condensate fraction for a spin-unbalanced
Fermi gas has been investigated both in the uniform and trapped case, by
modeling a harmonic trapped in local density approximation. The results
reproduce the phase separation observed in experiments, more quantitatively
a comparison with experimental data shows a good agreement for low po-
larization values, with an overestimation of the critical polarization. We
conclude that the main source to disagreement is to be found in an incorrect
determination of the phase boundary, due to the approximations made in
modeling the normal phase.

In Section 4.2 we have extended the standard result of Landau’s hydro-
dynamic theory of a superfluid, which leads to a purely linear spectrum
implying a collinear Beliaev decay. By including a gradient term in the
Hamiltonian, we have recovered the Bogoliubov-like spectrum for bosonic
excitations in a superfluid, producing a larger phase-space for the Beliaev
decay. We have shown that even slight variations from linearity of the spec-
trum can give important modifications to the decay rate of the process we
consider. We have applied our result to an interacting Fermi gas in the
BCS-BEC crossover: we have shown that the Beliaev decay is not allowed
at zero temperature in the deep BCS regime, due to kinematics constraints,

125
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as the spectrum grows less than linearly. As the strength of the attractive
interaction is increased, the collective mode spectrum increases linearly or
faster as y = (kF as)�1 & �0.14, thus allowing the decay of one collective
excitation into lower energy excitations. This mechanism becomes more and
more relevant as the coupling gets stronger. We observe that in the BCS
regime in the low-temperature limit a collective excitation can decay only by
breaking down into two fermions at the threshold energy Eth; on the other
hand at unitarity and in the BEC regime a collective excitation can also
decay in two collective excitations by means of the Beliaev decay.

In Section 4.3 we have shown that the Berezinskii-Kosterlitz-Thouless
critical temperature of the superfluid-normal phase transition can be extracted
from a description of the superfluid density, which takes into account Gaussian
fluctuations in the finite-temperature equation of state. The agreement with
very recent experimental data for both the critical temperature [148] and
the sound velocity [237] is remarkably good and crucially depends on the
inclusion of Gaussian fluctuations.

In Section 4.4 starting from a theory of attractive fermions, performing
cutoff regularization plus renormalization of Gaussian fluctuations we have ob-
tained a remarkable relationship between the scattering length ab of composite
bosons and the scattering length as of fermions. Our formula ab = (2/3) as is
fully consistent with previous semi-analytical and numerical calculations [111,
117, 165–167]. We stress that our approach, limited to the quartic term in the
low-momentum expansion of bosonic collective excitations, is fully reliable in
the BEC regime but it cannot describe the entire 3D BCS-BEC crossover. In
fact in the BCS region, where the chemical potential µ is positive, the sign of
the coefficient � of the collective spectrum is negative (pair instability) and
further terms must be included in the momentum expansion.

Chapter 5 deals with high-Tc superconductivity in cuprates. After a review
of the main experimental features, a theoretical framework is introduced,
based on a gauge approach to the t � J model and on spin-charge separation:
the hole is decomposed as the product of spin-only excitation, a spinon,
and a charge-only excitation, a holon. The holon and the spinon are then
bound to statistical fluxes, allowing one to modify their statistics. A semionic
choice for the statistics and an opportune mean-field treatment lead to an
effective representation of the t�J model in terms of holons and spinons. The
model is characterized by three different temperature scales, corresponding,
respectively, to the appearance of a finite density of incoherent holon pairs,
to the appearance of a finite density of incoherent spinon pairs and, finally, to
the phase coherence leading to the onset of superconductivity. We have shown
that this theoretical framework is able to correctly reproduce the superfluid
density profile observed in underdoped and optimally-doped cuprates. Using
a single scale parameter ⇠ accounting phenomenologically for small scale
physics, our model fits rather well normalized superfluid density data from
YBCO (a-axis), BSCCO, Hg-1201 and LSCO in the aforementioned doping
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range. The universal critical exponent 2/3 and the near-universality of 3D XY
typee of the normalized superfluid density are also reproduced independently
of ⇠, as well as the approximate Uemura relation which is analytically derived.

Finally we mention some future perspective and some possible extensions
of the work presented in this Thesis:

• The contribution of Gaussian fluctuations to the equation of state has
a relevance reaching far beyond the BCS-BEC crossover: an extension
of the results found for in the present Thesis for the two-dimensional
case could allow for a better understanding of the strong-coupling limit
of other two-dimensional systems undergoing BCS-like pairing, e.g.
bilayers of fermionic polar molecules [163, 238] or exciton-polariton
condensates [239].

• Throughout this Thesis the interaction in the BCS-BEC crossover has
been always modeled as a contact potential, adequate for many ultracold
gases in the dilute limit. Modeling the interatomic interaction with a
realistic potential would allow for the study of long-range interactions
which are relevant, e.g. in the description of ultracold polar atoms and
molecules.

• Another direction, motivated by very recent experimental observa-
tions [240], would be the investigation of non-equilibrium properties
of ultracold Fermi gases the BCS-BEC crossover, in particular soliton
dynamics.

• The estimate we give for the Berezinskii-Kosterlitz-Thouless critical
temperature for a two-dimensional Fermi gas does not account for the
renormalization of superfluid density due to vortices. This point is the
subject of ongoing work, preliminary results show that vortices do not
substantially modify TBKT, however the agreement with experimental
data could be slightly improved.

• In Section 4.4 an analytical regularization scheme has been introduced
in the deep-BEC limit, on the other hand in Section 4.3 a numerical
investigation of the beyond-mean-field equation of state for the two-
dimensional BCS-BEC crossover has been pursued by using numerical
techniques. Is it possible to obtain analytical results across the whole
crossover?

• Finally, as far as high-Tc superconductivity in cuprates is concerned,
ongoing work is being carried out in order to extend our investigation of
superfluid density to the whole phase diagram, investigating the strange
metal region, for slightly overdoped cuprates, and to the Fermi liquid
region, for strongly overdoped samples. Preliminary results show that
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the approach used in this Thesis should be indeed capable of adequately
modeling the superfluid density in the strange metal phase.
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A
Infinite series through contour integration

In this Appendix we introduce a technique for the evaluation of infinite series
by rewriting them as a countour integration in the complex plane [36, 241].
We start from a series of the form

s =
1

�

X

n

f(i!n) (A.1)

where � is a parameter and !n = (2n + 1)⇡/� are fermionic Matsubara
frequencies. The main idea is creating a holomorphic function defined on
the complex plane having an infinite number of poles evenly spaced on the
imaginary axis. The function is to be defined such that the residue at each
pole is equal to a term in the infinite series above, so that a contour integral
over an infinite circuit enclosing the imaginary axis is equivalent to the sum
of the infinite series s. In fact the following equality holds

s =
1

�

X

n

f(i!n) =
1

�

I

C
dz f(z)

�

2
tanh

✓

�z

2

◆

(A.2)

provided that C is a contour enclosing counterclockwise the entire imaginary
axis, avoiding any other pole that the integrand may have. Since

Res


�

2
tanh

✓

�z

2

◆�

(i!n) = 1 (A.3)

the value of each residue is exactly the value of a term in the infinite series, as
wanted. The integration along the contour C is equivalent to the integration
of the contour C 0 shown in the left panel of Fig. A.1 where the radius R of
each semicircle is taken to be R ! 1. The integrand needs to go to zero
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132 Infinite series through contour integration

Figure A.1: Scheme of the contour integration employed for computing the
sum over the fermionic Matsubara frequencies, modified from Wikimedia
Commons.

faster than z�1 as |z| ! 1 for the Jordan’s lemma to hold [241], allowing
one to close the contour at infinity adding the semicircles without modifying
the value of the integral.

Finally the contour C 0 can be continuosly deformed into the contour C 00,
as shown in the right panel of Fig. A.1, including only the poles of the function
f(z). By using the properties of holomorphic functions in the complex plane
we transformed a sum over an infinite number of terms in a sum over a finite
number of terms, in fact our summation reduces to

s = � 1

�

X

i

Res


f(z)
�

2
tanh

✓

�z

2

◆�

(zi) (A.4)

where zi are the poles of f(z). The minus sign is due to the fact that the
deformed contour encloses the poles in the clockwise direction.

We can now then evaluate the sum in Eq. (3.64), i.e.:

� 1

�

X

n

1

(i!n)2 � x2
. (A.5)

Referring to Eq. (A.1) and Eq. (A.2) in this case f(z) = �(z2 � x2)�1.
Clearly the poles of f(z) are for z = ±x and a direct calculation shows that
the residue is the same at both poles, namely

Res



�1

z2 � x2

�

2
tanh

✓

�z

2

◆�

(z = ±x) =
�� tanh (�x/2)

4x
. (A.6)

Applying Eq. (A.4) one readily finds

� 1

�

X

n

1

(i!n)2 � x2
=

tanh(�x/2)

2x
. (A.7)
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as anticipated in Eq. (3.64). An analogous result can be obtained for sums
over bosonic frequencies, by modifying the weighting factor introduced in Eq.
(A.2) [36, 241].





B
Matrix element for the Beliaev decay

In this Appendix we calculate the matrix element H(3)
if of the Hamiltonian in

Eq (4.25), i.e.:

Ĥ(3) =

Z

d3r
h

(r�̂)
⇢̂0

2
(r�̂) +

1

6

✓

d

d⇢

u2

⇢

◆

⇢̂03 � �
~2

8m2
(r⇢̂0)2 ⇢̂

0

⇢2

i

. (B.1)

between the following initial and final states:

|ii = b̂†
p

|⌦i (B.2)

|fi = b̂†
q1

b̂†
q2

|⌦i , (B.3)

using the same notation as in Section 4.2. In order to make the subsequent
calculations simpler, we define the following functional1:

V̂ [f ] =
1p
2V

X

|k| 6=0

f (k)
⇣

b̂
k

eik·r + b̂†
k

e�ik·r
⌘

(B.4)

which can clearly reproduce all the operators appearing in the Hamiltonian
in Eq. (4.19) , i.e. ⇢̂ and r�̂, for an adequate choice of f ; note that it cannot
reproduce �̂. Every term appearing in the Hamiltonian in Eq. (4.19) is the
product of three operators, let us see how we can rewrite such a term. In
general a term composed by three operators is to be rewritten as:

V̂ [f ] V̂ [g] V̂ [h] = (2V )�
3
2

X

|k
i

| 6=0,i=1,2,3

f(k1)g(k2)h(k3)Xr

(K) . (B.5)

1Actually it is an operator-valued functional, hence the hat.
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With a slightly abuse of notation, to avoid being too verbose, we define
K ⌘ {k1,k2,k3}, and:

X
r

(K) ⇡ b̂
k1 b̂k2 b̂

†
k3

ei(k1+k2�k3)+b̂
k1 b̂

†
k2

b̂
k3e

i(k1�k2+k3)+b̂†
k1

b̂
k2 b̂k3e

i(�k1+k2+k3) .
(B.6)

Why the approximate equality sign ⇡ instead of a true equality? Many other
terms should appear in the expression above, however we retained only the
terms with two annihilation operators and one creation operator; the other
terms are going to zero when calculating the matrix element between |ii and
|fi, and can then be ignored for the sake of the present calculation.

We can now rewrite the Hamiltonian as:

Ĥ(3) =

Z

d3r
⇣

C1V̂ [l] V̂ [m] V̂ [l] + C2V̂ [m] V̂ [m] V̂ [m]
⌘

(B.7)

with C1 = 1/2, C2 = 1/6
d
d⇢̄

c2

⇢̄ , l (k) = (i~)(ik)A�1
k

= �~kA�1
k

, m (k) = A
k

; it
is easily verified that this Hamiltonian corresponds to Eq. (4.19). Using the
expression found above for the product of three V̂ functionals we get:

H(3)
if = (2V )�

3
2

X

|k
i

| 6=0,i=1,2,3

(C1l(k1)m(k2)l(k3) + C2m(k1)m(k2)m(k3)) Xif

(B.8)
having defined:

Xif = hi|
Z

d3rX
r

(K)|fi (B.9)

and the d3r integration has been taken inside the matrix element, as the only
r-dependent term is X

r

(K).

B.1 Wick’s theorem comes in handy

Preliminarly we want calculate the following matrix element (here we also
anticipate the result):

hi|b̂
k1 b̂k2 b̂

†
k3

|fi = h⌦|b̂
p

b̂
k1 b̂k2 b̂

†
k3

b̂†
q1

b̂†
q2

|⌦i =
X

L

�
p,l1�k1,l2�k2,l3 (B.10)

The last sum being over li, which are all the permutations of the final-state
momenta {k3,q1,q2}. Explicitely:

L = {{l1 = k3, l2 = q1, l3 = q2}, {l1 = k3, l2 = q2, l3 = q1}, · · · } (B.11)

Also we note that the � functions appearing in Eq. (B.10) are Kronecker
�’s: this is consistent with the fact that the momenta are defined by discrete
summations, which will eventually be converted to integrals.

The calculations leading to Eq. (B.10) using a direct approach would
be quite cumbersome, but the result can be straightforwardly derived by



B.1 Wick’s theorem comes in handy 137

using Wick’s theorem [242], which allows one to rewrite the product of many
annihilation/creation operators as the sum of its normal-ordering and its
contractions:

ÂB̂ · · · Ẑ =: ÂB̂ · · · Ẑ : +
X

singles

: ÂB̂ · · · Ẑ : +

+
X

doubles

: ÂB̂ · · · Ẑ : +
X

triples

: ÂB̂ · · · Ẑ : + · · · (B.12)

where the first sum is over all the possible terms created by applying one
contraction to the initial product, subsequently applying the normal ordering.
Similarly the second summation is over all the possible normal-ordered 2-
contractions, and so on.

We apply the theorem to the following product:

b̂
p

b̂
k1 b̂k2 b̂

†
k3

b̂†
q1

b̂†
q2

(B.13)

Being interested in the product of six operators we can stop evaluating the
summations in Eq. (B.12) after the term with three contractions, which
actually will be our only contribution. In fact the 0-contraction term, being
normal ordered, will evaluate to zero because

h⌦| something normal ordered |⌦i = 0 . (B.14)

Analogously the 1-contraction and 2-contraction terms will have a non-
contracted part which, being a normal ordered product of operators, will
evaluate to zero when touching | ⌦i on the right. So we are left with the
following equality:

h⌦|b̂
p

b̂
k1 b̂k2 b̂

†
k3

b̂†
q1

b̂†
q2

|⌦i = h⌦|
X

triples

: b̂
p

b̂
k1 b̂k2 b̂

†
k3

b̂†
q1

b̂†
q2

:|⌦i (B.15)

By noting that the only non-zero contraction is between a creation and an
annihilation operator, remembering the canonical commutation relationship
[b
k

, b†
q

] = �
k,q, we explicitly list all the contractions:

8

>

>

<

>

>

:

b
k

b
q

= b
k

b
q

� : b
k

b
q

:= 0

b†
k

b†
q

= b†
k

b†
q

� : b†
k

b†
q

:= 0

b
k

b†
q

= b
k

b†
q

� : b
k

b†
q

:= b
k

b†
q

� b†
q

b
k

= �
k,q

(B.16)

It is now easy to see that all the possible 3-contractions in Eq. (B.15)
correspond to what anticipated above in Eq. (B.10).

Going back to Eq. (B.10), there are 3! = 6 different permutations; however
only two of them, i.e. the permutations explicitly listed in Eq. (B.11), have
physical meaning. The other four permutations, along with the momentum
conservation constraint p = q1 + q2, impose one of the following constraints:
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• p = q1, q2

= 0: the initial state p “continues” to q1, a 0-momentum
excitation is created, i.e. there is no decay.

• p = q2, q1

= 0: the initial state p “continues” to q2, a 0-momentum
excitation is created, i.e. there is no decay.

Neither of those contributions is relevant for the present treatment, so
that we are left with:

h⌦|b̂
p

b̂
k1 b̂k2 b̂

†
k3

b̂†
q1

b̂†
q2

|⌦i ⇡ �
p,k3�k1,q1�k2,q2 + (k1 $ k2) ⌘ X0 . (B.17)

We can now use this result to easily calculate Xif :

Xif = hi|
Z

d3reir·(k1+k2�k3)b
k1bk2b

†
k3

|fi + hi|
Z

d3reir·(k1�k2+k3)b
k1b

†
k2

b
k3 |fi +

+ hi|
Z

d3reir·(�k1+k2+k3)b†
k1

b
k2bk3 |fi

(B.18)

Recalling that
R

d3reir·k = (2⇡~)3 �(3)(k) we can rewrite Xif as:

Xif = (2⇡~)3
h

�(3) (k1 + k2 � k3) hi|b
k1bk2b

†
k3

|fi +

+�(3) (k1 � k2 + k3) hi|b
k1b

†
k2

b
k3 |fi +

+�(3) (�k1 + k2 + k3) hi|b†
k1

b
k2bk3 |fi

i

=

(B.19)

remembering that the operators commute, having different arguments, and
using Eq. (B.17) one finally gets:

Xif = (2⇡~)3
h

�(3) (k1 + k2 � k3) X0 + �(3) (k1 � k2 + k3) X0 (k2 $ k3) +

+�(3) (�k1 + k2 + k3) X0 (k1 $ k3)
i

(B.20)

Plugging in the explicit expression for X0 from the second member of Eq.
(B.17) we see that each term in the previous formula is the product of 4 Dirac
(or Kronecker) � functions, and there are 6 terms in total. By repeatedly
applying the formula f(x)�(x�a) = f(a)�(x�a) (respectively fa�a,b = fb�a,b)
we see that finally Xif can be rewritten2 as:

Xif = (2⇡~)3 �(3)(p � q1 � q2)
X

L

�
k1,l1�k2,l2�k3,l3 (B.21)

and the sum over the permutations L is just like the sum in Eq. (B.10). The
Dirac � function just imposes momentum conservation, from now on we will
just write, for the sake of simplicity:

�(3)(p � q1 � q2) = �(3)(momentum) (B.22)
2The full calculation is very lengthy but straightforward.
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Replacing the Kronecker � with a Dirac � function in the continuum limit3

�
k,q �! (2⇡)3

V
�(3) (k � q) (B.23)

we can rewrite Xif as follows:

Xif = (2⇡~)3 �(3)(momentum)
(2⇡)9

V 3

X

L

�(3) (k1 � l1) �
(3) (k2 � l2) �

(3) (k3 � l3)

(B.24)

B.2 Putting everything back together

Having found a simple expression for Xif we can go back to Eq. (B.8). As
seen before:

H(3)
if = (2V )�

3
2

X

|k
i

| 6=0,i=1,2,3

(C1l(k1)m(k2)l(k3) + C2m(k1)m(k2)m(k3)) Xif

(B.25)
Moreover we take the continuum limit:

X

k

! V

(2⇡)3

Z

d3k (B.26)

X

ki 6=0,i=1,2,3

! V 3

(2⇡)9

Z

d3k1d
3k2d

3k3 , (B.27)

obtaining:

H(3)
if = (2V )�

3
2

Z 3
Y

i=1

d3ki (C1l(k1)m(k2)l(k3) + C2m(k1)m(k2)m(k3)) ⇥

⇥ (2⇡~)3 �(3)(momentum)
X

L

�(3) (k1 � l1) �
(3) (k2 � l2) �

(3) (k3 � l3)

(B.28)

Performing the three d3ki integrations using the Dirac � functions we get:

H(3)
if = (2V )�

3
2 (2⇡~)3 �(3)(momentum) (2C1 (M1 + M2 + M3) + 6C2M4)

(B.29)
Now, for simplicity’s sake, we modify the notation a little:

�(3)(momentum)f(p,q1,q2) = �(3)(p � q1 � q2)f(p,q1,p � q1) . (B.30)

3It can be justified by noting that:
P

k �k,q = 1 ! V

(2⇡)3

R
d3k (2⇡)3

V

�(3) (k � q) = 1.
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So q2 is replaced by p � q, because of momentum conservation, and we
can drop the subscript in q1, redefining q1 ! q. Writing Eq. (B.29) we
introduced the quantities Mi, we now write them explicitely:

8

>

>

>

>

>

>

>

>

<

>

>

>

>

>

>

>

>

:

M1 = m(p)l(q)l(p � q) = ~(p · q � q2)
⇣

~⇢̄
c

⌘� 1
2
q

|p|
|q||p�q|

M2 = m(q)l(p � q)l(p) = ~(p2 � p · q)
⇣

~⇢̄
c

⌘� 1
2
q

|q|
|p||p�q|

M3 = m(p � q)l(p)l(q) = ~(p · q)
⇣

~⇢̄
c

⌘� 1
2
q

|p�q|
|p||q|

M4 = m(p)m(q)m(p � q) =
⇣

~⇢̄
c

⌘

3
2 p

pq |p � q|

(B.31)

At first we calculate them as Landau does, i.e. in a low transferred momentum
approximation, assuming that the product particle momenta are collinear
one to each other, and also with respect to the initial-state momentum.
Subsequently we calculate the exact values.

B.2.1 Approximate Landau’s result

In this Subsection we calculate the approximate matrix element. As far as
this Subsection is concerned we are going to use a linear Bogoliubov spectrum:

~!
p

⇡ u|p| (B.32)

where u is the sound velocity. The energy and momentum conservation
relations for the process are:

(

0 = Ef � Ei = u (|p| � |q1| � |q2|)
0 = p � q1 � q2

(B.33)

The two relations together imply that |q1 � q2| = |q1| � |q2|, which can be
satisfied only if the angle between q1 and q2 is zero; it is easily seen that this
implies that also the angle between qi and p is zero: a linear spectrum for
the excitations implies a collinear decay.

We thus note that in the collinear limit (p//q) the following identities
hold:

p · q = pq cos (✓) = pq (B.34)

and

|p � q| =
p

p2 + q2 � 2pq cos (✓) =
p

p2 + q2 � 2pq =
p

(p � q)2 = |p � q|
(B.35)

where ✓ ⇡ 0 is the angle between p and q. Consequently:

MLandau
1 = ~

✓

~⇢̄
c

◆� 1
2

(pq�q2)

r

p

q |p � q| = ~
✓

~⇢̄
c

◆� 1
2

sgn(p�q)
p

pq |p � q|

(B.36)



B.2 Putting everything back together 141

The conservation of energy also implies |p| � qi, so that we can take
sgn(p � q) = 1. Going on with the calculation of the other quantities one
finds:

MLandau
2 = MLandau

3 = ~
✓

~⇢̄
c

◆� 1
2 p

pq |p � q| = MLandau
1 (B.37)

MLandau
4 = ~

✓

~⇢̄
c

◆

3
2 p

pq|p � q| . (B.38)

Finally inserting the results into Eq. (B.29) and simplifying a bit we obtain:

H(3)
if =

(2⇡~)3

(2V )
3
2

·�(3)(momentum) ·3
✓

~⇢̄
c

◆� 1
2 p

pq|p � q|
✓

1 +
1

3

~2⇢̄2

c2

d

d⇢̄

u2

⇢̄

◆

(B.39)
in agreement with Refs. [120, 126, 127].

B.2.2 Exact result

Not making any assumption on the form of the spectrum or on the collinearity
of decay products we have:

M1 = ~
✓

~⇢̄
c

◆� 1
2 p cos ✓ � q

|p � q|
p

pq |p � q| , (B.40)

M2 = ~
✓

~⇢̄
c

◆� 1
2 p � q cos ✓

|p � q|
p

pq |p � q| , (B.41)

M3 = ~
✓

~⇢̄
c

◆� 1
2

cos ✓
p

pq |p � q| . (B.42)

Their sum reads

M1 + M2 + M3 = ~
✓

~⇢̄
c

◆� 1
2
✓

(p � q)(cos ✓ + 1)

q|p � q| + cos ✓

◆

p

pq |p � q| .

(B.43)
Finally

M4 = 3~
✓

~⇢̄
c

◆

3
2 p

pq|p � q| . (B.44)

Inserting into Eq. (B.29) at last one finds the matrix element for the Beliaev
decay:

H(3)
if =

(2⇡~)3

(2V )
3
2

· �(3)(momenta) · 3

✓

~⇢̄
c

◆� 1
2 p

pq |p � q|
✓

1 + �
~2⇢̄2

c2

d

d⇢̄

u2

⇢̄

◆

(B.45)
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with
��1 =

p � q

|p � q|(1 + cos(✓)) + cos(✓) (B.46)

and of course to recover the approximate treatment of the previous Subsection
we just need to set cos ✓ = 0, which in turn implies � = 1

3 .
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ĉ-Axis Microwave Penetration Depth of Bi2Sr2Ca1Cu2O8+� Crystals”,
Physical Review Letters 75, 4516 (1995).

[231] C. Panagopoulos, B. D. Rainford, J. R. Cooper, and W. Lo, “Effects
of carrier concentration on the superfluid density of high-Tc cuprates”,
Physical Review B 60, 14617 (1999).

[232] D. A. Bonn, K. Zhang, R. Liang, D. J. Baar, D. C. Morgan, and
W. N. Hardy, “Oxygen vacancies, zinc impurities, and the intrinsic
microwave loss of YBa2Cu3O7��”, Journal of Superconductivity 6, 219
(1993).

[233] J. Stajic, A. Iyengar, K. Levin, B. R. Boyce, and T. R. Lemberger,
“Cuprate pseudogap: Competing order parameters or precursor super-
conductivity”, Physical Review B 68, 024520 (2003).

[234] S.-F. Lee, D. C. Morgan, R. J. Ormeno, D. M. Broun, R. A. Doyle, J. R.
Waldram, and K. Kadowaki, “a�b Plane Microwave Surface Impedance
of a High-Quality Bi2Sr2CaCu2O8 Single Crystal ”, Physical Review
Letters 77, 735 (1996).

[235] C. Panagopoulos, J. R. Cooper, G. B. Peacock, and I. Gameson,
“Anisotropic magnetic penetration depth of grain-aligned HgBa2Ca2Cu3O8+�”,
Physical Review B 53, R2999 (1996).

[236] R. Prozorov and R. W. Giannetta, “Magnetic penetration depth in
unconventional superconductors”, Superconductor Science and Tech-
nology 19, R41 (2006).

[237] N. Luick, “Local probing of the Berezinskii-Kosterlitz-Thouless tran-
sition in a two-dimensional Bose gas”, MSc Thesis (University of
Hamburg, 2014).

[238] M. A. Baranov, A. Micheli, S. Ronen, and P. Zoller, “Bilayer super-
fluidity of fermionic polar molecules: Many-body effects”, Physical
Review A 83, 043602 (2011).

[239] T. Byrnes, N. Y. Kim, and Y. Yamamoto, “Exciton–polariton conden-
sates”, Nature Physics 10, 803 (2014).

[240] T. Yefsah, A. T. Sommer, M. J. H. Ku, L. W. Cheuk, W. Ji, W. S.
Bakr, and M. W. Zwierlein, “Heavy solitons in a fermionic superfluid”,
Nature 499, 426 (2013).



160 Bibliography

[241] W. Appel, Mathematics for Physics and Physicists, 1st ed. (Princeton
University Press, 2007).

[242] G. C. Wick, “The Evaluation of the Collision Matrix”, Physical Review
80, 268 (1950).


	List of Figures
	List of Publications
	Introduction
	The BCS-BEC crossover
	The origins: superconductivity and Bose-Einstein condensation
	The BCS-BEC crossover: an introduction
	A review of experimental techniques

	Mean-field treatment for the BCS-BEC crossover
	Introduction: the extended BCS Hamiltonian
	The BCS ground state
	Extended BCS equations from the field integral
	Regularized potential
	The unbalanced Fermi gas
	The extended BCS equations
	Condensate fraction
	Condensate fraction for a trapped system


	Beyond mean field: collective excitations in the BCS-BEC crossover
	Collective excitations in the BCS-BEC crossover: general theory
	Landau hydrodynamics and the Beliaev decay
	Beliaev damping: an improved treatment
	Beliaev damping for an attractive Fermi gas

	The two-dimensional Fermi gas
	Theoretical framework
	First and second sound
	Critical temperature: the BKT transition

	Regularization in the deep-BEC limit
	Mean field and fluctuations
	Scattering length of composite bosons in the BEC limit


	A gauge approach to cuprates
	Experimental review
	From the CuO₂ planes to the Zhang-Rice singlets

	A gauge approach to high-Tc superconductivity in cuprates
	The t-J model: bosonization and spin-charge separation
	Gauge fixings
	Optimization of the spinon configuration
	Effective action for holons and spinons
	Holon pairing
	Spinon pairing
	Superconductivity and phase diagram

	A gauge approach to superfluid density
	Composition rule for superfluid density
	Superfluid density from spinons
	Superfluid density from holons
	Comparison with experimental data
	The Uemura relation

	Three universality classes for superfluid density

	Conclusions and future perspectives
	Acknowledgements
	Infinite series through contour integration
	Matrix element for the Beliaev decay
	Wick's theorem comes in handy
	Putting everything back together
	Approximate Landau's result
	Exact result


	Bibliography

