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Chapter 1

Introduction

The high temperature superconductivity (from now on HTSC), is a resistance-

less electric current flow observed chiefly in a class of crystals called “cuprates”

at very high temperatures compared to those of standard BCS superconduc-

tors, so that many of them exhibit superconductivity at temperatures ac-

cessible by non-highly-specialized laboratories. To date, the HTSC cuprate

with the highest critical temperature is HgBa2Ca2Cu3O8+δ which exhibits

the superconductive transition at 135 ◦K1, see [1].

Starting from its initial experimental observation by Bednorz and Müller

in 1986 [2], HTSC has been and still is a major unsolved problem in The-

oretical Physics; as soon as it was clear that the BCS theory, which cor-

rectly explains superconductivity in a wide range of materials, is not able

to successfully describe what happens in a cuprate (see for instance [3]), the

research in the HTSC field rapidly developed into many different directions.

For an exhaustive review the reader can refer to [3], again. In spite of the

huge number of theories which have been proposed in order to explain the

phenomenon in the span of nearly two-and-half decades, no fully satisfying

theoretical interpretation is known to date. On the other hand, a plethora of

1Some research groups claimed the discovery of material with higher Tc, but those

claims have not (yet) been verified independently.
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6 Chapter 1. Introduction

experimental data is available, making HTSC one of the most experimentally

studied physical phenomena in Condensed Matter Physics.

Among the many theories which have been developed in order the explain

the HTSC in cuprates, from the very first years an approach pursued by many

theorists has been the “spin-charge separation”, pioneered by P.W. Anderson

([4]). According to this viewpoint the fundamental excitations in a HTSC

are not simply electron/holes but are spinons and holons, i.e. particles which

respectively carry only spin or only charge. This approach in latest years

has found support in experimental data which seem to indirectly confirm its

correctness, or to confirm it in one-dimensional systems (see for instance [5]

and [6]).

Once one agrees that the HTSC can be correctly described in terms of

holons and spinons, various choices can be made about how to separate

the electron/holes degrees of freedom. Historically two straightforward ap-

proaches, called slave fermion and slave boson, have been pursued; more re-

cently a more general and flexible approach has been proposed, an approach

which is based upon the Chern-Simons bosonization. Within this framework

we can re-obtain the slave boson and slave fermion as particular cases, while

introducing at the same time two gauge fields which can be used to correctly

describe the symmetries of the system and to catch the essential features

of the dynamics of the spinons and of the holons, which ultimately lead to

the superconductive transition. In particular one of the Chern-Simons gauge

fields takes into account the U(1) gauge symmetry, while the other one takes

into account the SU(2) spin rotational symmetry of the t-J model, and nat-

urally describes the spinon vortices which play a key role in the onset of

the superconductivity. The full superconductivity is then achieved in three

steps (condensations of holons, condensation of spinons, coherence) and is

mediated by another gauge field which naturally arises from the spin-charge

separation.
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The topic of the present thesis is the study of superfluid density within

such a framework, as proposed in [7]. The superfluid density is a key quan-

tity in a super system, as on one side is one of the most straightforward

macroscopically-defined physical observables, while being on the other side

intimately correlated with the microscopical behaviour of the superconduc-

tor.

In the introductory chapters the superfluid density will be reviewed, both

from an historical and experimental point of view; particular attention will

be awarded to the various non-equivalent definitions of superfluid density

which are commonly used in scientific literature. After an in-depth expla-

nation of the relevant part of the model in [7], finally the calculation of the

superfluid density as a function of the temperature, which represents the

original contribution of this thesis, will be carried out. The results will be

compared with experimental data. An explanation of the physical meaning

of the features of the superfluid density just found will be given in the final

chapter.





Chapter 2

The superfluid density

2.1 The superfluid density:

a historical perspective and general properties

The superfluid density (in symbols ρs) is a key quantity in the study and in

the description of a superfluid or superconducting system; historically it has

represented one of the first, if not the first quantity used in the study of those

systems. Following Landau and Lifshitz ([8], § 44) one can give an elementary

phenomenological definition of superfluid density in a superconductor, using

the so-called “two fluid” phenomenological model. Before briefly introducing

this model, it is worth pointing out that as the experimental discovery of SC

preceded its microscopical interpretation by more than four decades, for a

very long time, for the lack of a better theory, the SC has been analyzed on

sheerly phenomenological grounds. Hence the importance of such theories.

The “two fluid” model takes into account two kinds of charge carriers

inside a SC: the “normal” electrons, which are subject to resistance, and

the “super” charge carriers, upon which no further assumptions are made,

except for the fact that they can move without any dissipation; after having

made such a simple assumption one can use the standard electrodynamics

theory to see the consequences of a resistance-less current flow. Despite its

9



10 Chapter 2. The superfluid density

simplicity, this theory is able to describe many experimental features of a

SC, without taking into account the microscopical details and without even

knowing which are the charge carriers.

According to this picture, the superfluid density ρs can then be defined

as the number density of charge carriers of the second type. Nonetheless one

can work a little within this framework and relate ρs with other quantities

of the SC system. To do so one notes that as a consequence of the basic

assumption of the “two fluids” approach the total current density can be

decomposed, when the temperature is in the range 0 < T ≤ Tc, as follows:

j = jn + js

where again jn is a “normal” current density, which is subject to resistance

and dissipation by Joule heating, and js a “super”, dissipation-free current

density. Without losing the generality of this treatment, one can describe

the probability of finding a super charge carrier in a given position at a

given time as the squared modulus of a condensate wave function: denoting

with ∆c (t, r) ≡ |∆c| eiΦ this wave function, recalling that for a generic wave

function in real space representation:

v =
~
m
∇Φ (2.1)

the superfluid density can be implicitly defined by the following relation:

js = ρsvs = ρs
e~

2me
∇Φ

where me and e are respectively the mass and the charge of the electron1.

Here ρs, which is the number density of superconducting electrons and plays
1Here we are forced to take into account the actual microscopical structure of the

charge carriers. The factor 2 appears before the electron charge, which is assumed to be

nagative, because the super charge carriers in a superconductors are pairs of electron, the

Cooper pairs.
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the very same role of the superfluid fraction in a fluid, is expressed in terms

of dynamic variables of the system, as are the current flow and the phase of

the condensate wave function. Usually ρs is plotted and studied as a function

of temperature.

It is clear that such a description is deeply entailed with a phenomeno-

logical description of the superconducting sample, and it is not well suited

to be applied where the microscopical details of a superconductor come into

play. We will proceed analyzing the consequences of the Landau theory be-

fore giving in subsequent sections two more modern definitions of ρs which

will be used for the actual calculations throughout the present thesis.

2.2 The London equations

The main success of of “two fluid” approach is its success in allowing to

derive the London equations which in turn account for one of the key exper-

imentally observed features shared by types of superconductors: the perfect

diamagnetism, i.e. the impossibility for a magnetic field to penetrate inside

a superconductor. This property, which is also called Meissner effect, is con-

veniently described in terms of the London penetration depth λ. λ can be,

in turn, easily related to the superfluid density. This relation will be used

when comparing theoretical results with experimental data.

To derive2 the London equations one starts roughly from the same hy-

potheses of the two fluid approach: no knowledge of the structure of the

charge carriers is needed. The Newton’s law for a charge inside a supercon-

ductor, in the presence of an electric field, reads:

m
dvs
dt

= −eE (2.2)

denoting with e the charge of the SC charge carriers and with E the

2Our derivation roughly follows the one in [9].
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electric field. As the SC current density can be written as js = −eρsvs, this
equation along with eq. 2.2 implies that:

d

dt
js =

ρse
2

m
E (2.3)

where m is the mass of the charge carriers (for a BCS Cooper pair,

composed of two electrons, one has m = 2me). Now one can take the curl of

eq. 2.3, and by using Faraday’s law of induction ∇×E = −∂B
∂t can obtain:

∂

∂t

(
∇× js +

ρse
2

m
B

)
= 0 (2.4)

which, along with Maxwell’s equation ∇ × B = µ0js, the continuity

equation ∇· js = ∂ρ
∂t and the boundary conditions completely determines the

magnetic field and the current density inside a superconductor.

It is to be noted that this equation fails at explaining the perfect dia-

magnetism experimentally observed in an SC, as every time-independent B

is allowed to arbitrarily penetrate into the insides of the SC material, gen-

erating a current density js, which will be in turn time-independent.

On sheerly phenomenological grounds, to be able to reproduce the Meiss-

ner effect, the London brothers modified equation 2.4 into the following, more

restrictive, condition:

∇× js +
ρse

2

m
B = 0 (2.5)

This equation, using the Maxwell equations once more3, can be rewritten

as:

∇2B =
4πρse

2

mc2
B (2.6)

whose solutions can be written in the following form:
3More precisely Ampère’s circuital law ∇ × B = µ0j when the fields are time-

independent, then the vector calculus identity ∇ × (∇×B) = ∇ (∇ ·B) − ∇2B, and

then ∇ ·B = 0.



2.3. Why studying the superfluid density? 13

B⊥(x) = B0 exp
(
−x
λ

)
λ =

√
mc2

4πρse2
(2.7)

B⊥ being the perpendicular component of the magnetic field, with re-

spect to the surface of the sample, and B0 being its value at the surface.

Equation 2.7 means that while flowing inside a SC a magnetic field decays

exponentially, with λ being the length at which it is reduced by a factor 1
e .

This parameter is customarily called London’s penetration depth. It is

very important noting for what follows that λ and ρs are correlated by a

simple relation:

ρs ∝ λ−2 (2.8)

as λ is a quantity which is quite easily measured experimentally.

2.3 Why studying the superfluid density?

As briefly noted in the introduction, there are many reasons for which it

is worth studying the superfluid density when testing the validity of newly

proposed mechanism for HTSC:

• Comparability with experiments: the ρs is one of the fundamental

quantities of a superconducting system, and one of the most easily

accessible through experiments; for instance the condensate density,

being defined on microscopical grounds, is much more difficult to be

measured experimentally. Moreover, ρs is related through the simple

relation in eq. 2.8 to the London penetration depth λ, which is even

more studied from an experimental point of view.

• Discriminating power between BCS and non-BCS SC: the su-

perfluid density seems to be a good parameter to tell apart BCS and

non-BCS behaviour: in particular, it has been experimentally observed
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that cuprates have a much lower ρs, a completely different approach

to the critical temperature and will have a very linear ρs(T ) behav-

ior for a wide range of temperatures between 0 and an intermediate

temperature.

• Comparability with empirical laws: the great deal of experimental

data available has led to the formulation of various empirical relations

for the superfluid density, the most important being the Uemura rela-

tion. A new theoretical model must reproduce those empirical results,

and, ideally, even try to find a more profound explanation for them.

2.4 “Mechanical” definition for ρs

As previously mentioned, and as discussed in [10], even in scientific literature

there is no general agreement over the exact definition of superfluid density;

as a result two non-equivalent definitions are commonly employed. In the

present and in the following sections those two definitions will be analyzed,

along with their phenomenological implications.

The superfluid density can be defined (following [11], [12], [13]) starting

from the phase stiffness of the SC condensate wave function phase, i.e. as

the energetic cost of slowly and infinitesimally varying the condensate wave

function phase. Let us consider the following infinitesimal twist applied to

of the condensate wave function (for |Q| � 1):

∆ (x) −→ ∆ (x) eiQ·x (2.9)

it is now easily seen, switching to momentum-space representation, that

such a twist is tantamount to imposing an arbitrary extra velocity Q
M to each

Cooper pair, in a BCS-like theory, or, more generally, to each “super” charge

carrier4.
4M is the mass of each Cooper pair (so that M = 2me) or the mass of a generic charge
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∆̃ (p) =

∫
d3xeip·x∆ (x) (2.10)

=⇒
∫

d3xeip·x∆ (x) eiQ·x =

∫
d3xei(p+Q)·x∆ (x) = ∆̃ (p + Q) (2.11)

Denoting with F (Q) the free energy F = − 1
β lnZ of the system when an

infinitesimal twist as in eq. 2.9 is applied to the condensate wave function,

one can evaluate the free energy difference for small values of |Q| and write

the first two Taylor expansion terms5:

∆F ≡ F (Q)− F (0) = |Q| ∂F (Q)

∂Q

∣∣∣∣
|Q|→0

+
|Q|2

2

∂2F (Q)

∂Q2

∣∣∣∣
|Q|→0

+O
(
|Q|3

)
(2.12)

As seen in eq. 2.10 and 2.11 when imposing the infinitesimal twist, from

a physical point of view one is simply shifting the speed of the Cooper pairs

as described in the following way:

v −→ v′ = v +
~
M

Q

so that the free energy variation will take account for the extra kinetic

energy, being then proportional to
∣∣ ~
MQ

∣∣2 and so quadratic in |Q|. One is

then allowed to take eq. 2.12 and discard all terms but the second when

Taylor-expanding ∆F :

∆F ≡ F (Q)− F (0) =
|Q|2

2

∂2F (Q)

∂Q2

∣∣∣∣
|Q|→0

It is also clear that the twist in eq. 2.9 affects only the superconducting

pairs, leaving the non-superconducting fraction of the system untouched, so

that the superfluid density can be implicitly defined as follows:

carrier.
5Elementary symmetry considerations show that ∆F will be dependent only upon |Q|

rather than Q, justifying the expansion.
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∆F =
1

2
ρsmv

2
s =⇒ ρs ≡ 4m

∂2F (Q)

∂Q2

∣∣∣∣
|Q|→0

(2.13)

To have a different insight upon the definition we just gave, one can also

think of eq. 2.13 as a measure of the phase coherence for the condensate

wave function of the system. If long-range phase coherence is present in

the system, there will be a free energy variation when imposing a position-

dependent phase twist to the order parameter. On the contrary, if the phase

of the condensate wave function were in a disordered state, changing the

phase would not have any energetic cost.

2.5 “Electromagnetic” definition for ρs

Alternatively ρs can also be defined as the coefficient governing phase fluc-

tuations in an effective action for superconductivity:

SEFF =
ρs
2

∫
dτ

∫
ddr (∇θ)2+(other non quadratical in ∇θ terms) (2.14)

In what follows we shall derive, following the treatment in [14], such an

effective action in the BCS theory framework to see how this definition can

be linked to physical observables of a SC system. In order to do so we recall

that the BCS Hamiltonian is written as:

Ĥ =
∑
k,σ

εkn̂k,σ −
g

Ld

∑
k,k′,σ

c†k+q,↑c
†
−k,↓c−k′+q,↓ck′,↑ (2.15)

with the usual notation for the electron creation/annihilation operators

and for the number operator, g being a positive constant. The interaction

term in the Hamiltonian allows electrons to scatter from a two-electron state

|k ↑,−k ↓〉 to a two-electron state |k + q ↑,−k− q ↓〉 with both the initial

and final momentum states being close to the Fermi surface. Even if in a very

simplified way, as the coupling g should in general also depended upon the
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transferred momentum, the Hamiltonian in eq. 2.15 can be used to study the

celebrated Cooper instability, i.e. the instability of the electron gas towards

the formation of Cooper pairs, which are time-reversed two-electron states

such as |k ↑,−k ↓〉. Cooper instability appears under a certain finite critical

temperature Tc and only in presence of an attractive interaction between

electrons, which can be even extremely feeble; this attraction is provided by

the electron-lattice interaction due to the different time scales of electron and

phonon propagation, and leads to a finite expectation value of time-reversed

pairs such the one discussed above, so that the the order parameter for the

BCS can be taken to be:

∆ =
g

Ld

∑
k

〈Ω|c−k↓ck↑|Ω〉

The superconductive phase properties can then be derived by studying

the theory in an opportune mean-field approaximation. As far as the su-

perfluid density is concerned we begin by noting that starting from eq. 2.15

the partition function for the BCS theory, minimally coupled to the electro-

magnetic field, reads:

Z =

∫
D
(
ψ, ψ̄

)
e−S[ψ,ψ̄]

S
[
ψ, ψ̄

]
=

∫ β

0
dτ

∫
ddr

[
ψ̄σ

(
∂t + ieφ+

1

2m
(−i∇− eA)2 − µ

)
ψσ − gψ̄↑ψ̄↓ψ↑ψ↓

]
We note that this theory is invariant for a local U (1) gauge group of

transformations, namely:

ψ −→ eiθ(τ,x)ψ ψ̄ −→ e−iθ(τ,x)ψ̄

φ −→ φ− ∂τθ (τ,x)

e
A −→ A +

∇θ (τ,x)

e

(2.16)

Such a theory can be rewritten by using an Hubbard-Stratonovich trans-

formation to decouple the quartic interaction in the Cooper channel. Then,

by using the Nambu spinor formalism, the theory can be recast as:
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Ψ̄ =
(
ψ̄↑, ψ↓

)
Ψ =

ψ↑
ψ̄↓



Z =

∫
D
(
ψ, ψ̄

)
D
(
∆, ∆̄

)
exp

(
−
∫

dτddr

[
|∆|2
g
− Ψ̄G−1Ψ

])
(2.17)

where now ∆ is redefined as the bosonic field used in the Hubbard-

Stratonovich transformation; we note that for the transformation group in

eq. 2.16 the ∆ field transforms as ∆ −→ ∆e2iθ(τ,x), and:

G−1 =

−∂t − ieφ− 1
2m (−i∇− eA)2 + µ ∆

∆̄ −∂t − ieφ− 1
2m (−i∇− eA)2 + µ


In eq. 2.17 one can carry out the functional integration over the fermionic

variables ψ e ψ̄ obtaining:

Z =

∫
D
(
∆, ∆̄

)
exp

(
−1

g

∫
dτddr |∆|2 + ln detG−1

)
By definition ∆ counts the number of Cooper pairs, so that it can be used

as order parameter for the superconducting transition: above Tc one sees

that |∆| = 0 and the phase remains undefined; on the other hand below Tc a

fundamental state with a fixed phase is created and equivalent fundamental

states are connected by a phase rotation of the order parameter ∆ −→ ∆eiθ.

In other words the superconductive transition in the BCS theory corresponds

to a U(1) local symmetry breaking.

The effective action in eq. 2.14 corresponds exactly to an effective action

for the Goldstone mode for T ≤ Tc; by following, again, [14] such an ef-

fective action can be written down starting from simple physical arguments

and assumptions on the symmetry of the system. Specifically, an effective

action for the Goldstone mode for the BCS theory must respect the following

constraints:
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• All the terms should go to zero in the θ −→ costant limit.

• The gradients and the temporal derivatives of θ must be sufficiently

slow-varying so that a first-order Taylor-series expansion is justified.

• Due to the symmetries of the system the effective action cannot contain

neither terms with an odd number of derivatives, nor terms with mixed

temporal/spatial derivatives.

• The resulting action must have the same symmetries of the original

BCS theory, particularly it must be invariant for the transformations

in eq. 2.16.

The most general form for an effective action respecting all the afore-

mentioned constraints is:

S [θ] =

∫
dτddr

[
c1 (∂τθ)

2 + c2 (∇θ)2
]

For consistency with the original action we can then couple the electro-

magnetic field, by minimal substitution, also adding a kinetic term for the

electromagnetic field:

S [θ,A] =

∫
dτddr

[
c1 (∂τθ + φ)2 + c2 (∇θ −A)2

]
+

1

4

∫
dτddrFµνF

µν

(2.18)

Assuming of describing the system at a high enough temperature 0 <

T ≤ Tc so that the quantum fluctuation can be neglected (i.e. ∂τφ = 0) and

also assuming that there are no electric fields inside the superconductor, (i.e.

φ = 0 e ∂τA = 0) then eq. 2.18 simplifies to:

S [θ,A] =
β

2

∫
ddr

[ρs
m

(∇θ −A)2 + (∇×A)2
]

where c2 has been redefined in terms of ρs. The gaussian integral over

the θ variable can be carried out, as θ appears quadratically in the action; in
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order to do so it is convenient rewriting the action as a sum in momentum

space6:

S [A] =
β

2

∑
q

(
ρs
m

(
Aq ·A−q −

(q ·Aq) (q ·A−q)

q2

)
+ (q×Aq) · (q×A−q)

)
(2.19)

This action can be rewritten in a simpler way by separating the longitu-

dinal and transverse components of Aq as follows:

Aq = Aq −
q (q ·Aq)

q2︸ ︷︷ ︸
≡A⊥q

+
q (q ·Aq)

q2︸ ︷︷ ︸
≡A‖q

substituting in the action in eq. 2.19:

S [A] =
β

2

∑
q

(ρs
m

+ q2
)
A⊥qA

⊥
−q (2.20)

This is the Anderson-Higgs mechanism in action; when the Goldstone

mode θ is integrated out then electromagnetic field acquires a mass term,

namely ρs
m ; from this action it is also immediate deriving the equations of

motion for the transverse component of A:

(ρs
m
−∇2

)
A⊥ (r) = 0

from which, by taking the curl of both sides, the first London equation

can be derived:

(ρs
m
−∇2

)
B⊥ (r) = 0 (2.21)

When ρs 6= 0, eq. 2.21 has only exponentially decaying solutions, i.e.

B⊥ ∝ exp
(
−x
λ

)
so that the transverse component of the magnetic field,

6We only give the final result, for a complete derivation the reader is referred to [14]
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when penetrating a superconductor is exponentially suppressed with a char-

acteristic decay length λ ∝
√

m
ρs
, which is in perfect accordance with eq.

2.7. The decay length is, generally, much shorter than the dimensions of

superconductive samples used by experimentalists, so that commonly it is

said that a SC ejects magnetic fields from its inside by means of Meissner

effect.

As previously seen London equations have been derived long before the

advent of BCS theory and can be derived on sheerly phenomenological

grounds, assuming that only part of the electrons is participating in the

resistance-less current flow, its numerical density being ρs:

js = −ρsevs

By retracing the steps in the present section which lead us from the BCS

theory to London equation it is easily seen how the coefficient governing

phase fluctuations, as described at the very beginning of this section, is

indeed the superfluid density.

2.6 ρF
s vs. ρEM

s

From the definitions given in the previous section it is clear that the mechanically-

defined superfluid density (from now on ρFs ) and the electromagnetically-

defined superfluid density (from now on ρEMs ) are in general not the same

quantity. An exhaustive contrastive review of ρFs and ρEMs can be found

in [10], along with a derivation of the following relation between these two

quantities:

ρFs = ρEMs

(
1− 4π2ρEMs Ld−2

T
〈I2〉

)
(2.22)

the average over I2 being taken with the following un-normalized distri-

bution:



22 Chapter 2. The superfluid density

WI ∝ e−
2π2ρEMs Ld−2

T
I2

For the aim of the present thesis, it is important noting that:

• Equation 2.22 obviously holds only when both quantities are defined;

particularly ρEMs may be undefined as ∇θ need to be a well-defined

function.

• By looking at eq. 2.20 one can understand that ρEMs is indeed the quan-

tity associated with the spontaneous symmetry breaking and with the

gauge field acquiring a mass gap due to the Anderson-Higgs mech-

anism; ρEMs is deeply entailed with the microscopical mechanisms of

SC.

• On the other hand one may say that ρFs is only incidentally related to

ρEMs in the BCS theory: it is not related to the gauge field becoming

gapped, but to the formation of a finite density of incoherent electron

pairs, as clear when referring to section 2.4. As the electron pairs

condense and become coherent at the same time in the BCS theory

framework, this difference in not observable and the two definition are

effectively interchangeable. However, when dealing with more sophis-

ticated theories with two different temperatures for pair condensation

and coherence this difference must be taken into account.

• As noted in [10] for sheerly numerical reasons in three-dimensional

systems ρFs ≈ ρEMs up to a part in 104, so that even in this case the

two definitions are interchangeable.

Throughout the present thesis we will refer, as commonly done is scien-

tific literature, to a generic superfluid density ρs, emphasizing the difference

between the two definitions only when essential to the discussion.
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We also note that usually in experimental reports of superfluid density

usually one is dealing with ρEMs . Usually ρEMs is calculated from λ, which

in turn is measured directly or with muon spin relaxation (µSR) techniques.

Even if it would be possible in principle to directly measure ρFs with a tor-

sional oscillator, no such experiment is known to the author at the time of

writing.

2.7 Theoretical predictions and experimental data

for superfluid density

From a theoretical point of view, following [15] and citations therein, one can

obtain an analytical expression for the superfluid density within a two-fluid

model and within the BCS theory. In the aforementioned paper one can

find that the analytical dependence of the penetration depth as a function

of temperature reads as follows:


λ(T ) = λ(T=0)√

1−
(
T
Tc

)4
(two-fluid model)

λ(T ) = λ(T=0)√
1−
(
T
Tc

)3−( TTc )
(BCS theory)

which in turn readily yields, through eq. 2.8, an expression for the su-

perfluid density (to be more precise we are now dealing with ρEMs ):


ρs(T ) = ρs(T = 0)

[
1−

(
T
Tc

)4
]

(two-fluid model)

ρs(T ) = ρs(T = 0)

[
1−

(
T
Tc

)3−
(
T
Tc

)]
(BCS theory)

(2.23)

Equations 2.23 are plotted in fig. 2.1, the main difference between the

two cases being the approach to the critical temperaure which is:
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Figure 2.1: ρs as a function of temperature, as predicted by the “two fluid”

model and by standard BCS theory, taken from [15]


ρs(T ) ∼

T→Tc
4t (two-fluid model)

ρs(T ) ∼
T→Tc

2t (BCS theory)

having introduced the adimensional quantity t ≡ Tc−T
Tc

. The “two-fluid

model” agrees with the microscopical theory as long as the global behaviour

of the superfluid density is concerned, but fails at catching the actual details

of the superconductive transition at T = Tc.

Obviously there is no analytical formula for the temperature dependence

of ρs in cuprates; however this parameter, along with the London penetration

depth to which it is correlated, has been widely investigated experimentally.

Fig. 2.2, shows that ρs in cuprates diverges appreciably from BCS theory:

the key differences can be seen as T −→ 0 and at T = Tc:

• At zero temperature both the BCS theory and the two fluid model

predict that for T −→ 0 the first derivative with respect to temperature
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Fig. 7.9 The form of the relative superfluid density as a function of temperature for a BCS
superconductor (pecked line) and for a typical cuprate (solid line) (qualitative).

same level of doping. Recall that λ−2
ab measures the 3D superfluid density; thus if the

hypothesis of universality is correct, one would expect the relation

λ2
ab(0)

d̄
= const. (7.6.1)

to hold, where d̄ is the average distance between CuO2 planes. While the microwave
data alone are hardly sufficient to test this hypothesis, we can try to compare the
values inferred from µSR (Uemura et al. 1989); ratios may be hoped to be given by
this technique more reliably than absolute values. The data of Uemura et al. (op. cit.)
appear compatible with the hypothesis as regards the higher-Tc materials, i.e. the ratio
is the same22 within the error bars for optimally doped T l-2223 and (near)-optimally
doped YBCO, and if we take the a-axis value for the latter from the microwave data
the constant comes out to be near 5× 105 Å. For LSCO the number is quite different,
about a factor of 2 larger.

The data of Uemura et al. were actually presented as evidence of an intriguing cor-
relation between λ−2

ab (0) and the transition temperature Tc; for doping below optimal
the relationship, for the nine different systems measured, appears to be rather con-
vincingly linear. However, their Fig. 2 also shows that the increase of λ−2

ab (0) with
doping persists beyond the maximum in Tc.

One may ask how well the data fit a näıve picture, in which the superfluid density
per plane is simply expressed as ne2µ0/m∗, where n is the number of carriers per unit
area and m∗ (∼4 m) the effective mass inferred from the specific heat measurements,
so that the quantity λ−2

ab (0) is n3De2µ0/m∗. For optimally doped YBCO, n3D
∼= peff ×

1.1 × 1022 cm−3, where peff is the effective number of carriers per CuO2 unit (see
below), and the quantity λ−2

ab (0) is therefore approximately 1.5peff(m/m∗) 10−6 Å−2.

22Actually, the values of d̄ and λ−2
ab (0) separately are closely similar for the two materials, but this

is not particularly significant since the multilayering structure is different.

Figure 2.2: Superfluid density as a function of temperature, as measured

from the London penetration depth, in a BCS superconductor (dashed line)

and in a cuprate superconductor (solid line). The x and y axes are rescaled

to make Tc and ρs (T = 0) coincide. Taken from [3]

of ρs should go to zero as well, as can be easily derived from eq. 2.23.

On the contrary, experimental data shows that for HTSC cuprates
dρs
dT

∣∣∣
T=0
6= 0 Furthermore the linearity of ρs can extend to quite high

temperature, as high as Tc
2 . Usually this behaviour is parametrized as

follows:

ρs ∼ 1− αT for T −→ 0 (2.24)

• The critical temperature approach is quite peculiar to cuprates: it has

been noted that, in the vicinity of the critical temperature, the critical

exponents seems to be the one of a 3D XY model. This implies that

ρs can be parametrized as follows:

ρs ∼
∣∣∣∣T − TcTc

∣∣∣∣δ for T −→ Tc (2.25)

with δ ≈ 0.66.
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Experimentally those two features of cuprates have been extensively ver-

ified for a wide variety of cuprate compounds:

• The linearity of the superfluid density in proximity of the absolute zero

has been verified both directly and indirectly, i.e. by verifying the lin-

earity of λ as in λ (T ) = 1+βT , which in turn implies linearity for ρs as

parametrized in eq. 2.24 with α = −2β. More specifically the linearity

has been verified for YBCO (see [16]), for BSCCO (see [17] and [18]),

for HgBa2Ca2Cu3O8+δ (see [19]); the interested reader is referenced to

[20] and citations therein for a full experimental review of the topic. In

addition to that, as shown in fig. 2.4, the low-temperature behaviour

of ρs is also a means of ruling out an s-wave order parameter, further

differentiating the cuprates physics from standard superconductors.
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FIG. 1. The surface resistance at 14.4, 24.6, and 34.7 GHz.
Inset: A closeup of the low temperature behavior of Rs .

only for the purest undoped samples [5], where t is free
to increase at low T to almost an order of magnitude more
than its corresponding value for doped samples.) Rs
(34.6 GHz) between 20 and 60 K for our BSCCO crystal
ranges from 2.7 to 4 mV which is about 3 to 4 times the
corresponding value of 0.7 to 1.5 mV for a typical YBCO
crystal doped with a small amount of impurities [5]. Rs
�Rs ~ xntl3�l2�0�� might be expected to be somewhat
larger for BSCCO than for YBCO because of the larger
l. However, this factor does not account for the whole
difference. A residual surface resistance, Rs�0�, evident
at low T , is the most likely source of the discrepancy.
Such a residual resistance is seen to a varying degree in
all Rs measurements of high-Tc superconductors except
untwinned YBCO crystals [13] and is most probably due
to slight structural imperfections or impurities. However,
it is clear from the v2 frequency dependence that it is
not sensible to subtract Rs�0� and use Rs�T� 2 Rs�0� to
compute s1 as some authors [7,8] have suggested. A
more useful approach might be to assume xn�0� fi 0, i.e.,
a residual normal fluid at T � 0, which would preserve
the v2 frequency dependence exhibited by the data.
Figure 2 presents all the 34.7 GHz Dl�T � data. These

include three separate temperature sweeps for the large
1.25 mm 3 1.4 mm crystal and one for the 0.45 mm 3
0.5 mm piece cut from it. The agreement is excellent (the
noisier 25 GHz data, not shown, also agreed well). Be-
low about 25 K, there is a strong linear term with slope
10.2 Å/K. This value is about 2.4 times the value re-
ported by Hardy et al. [1] on YBCO. Figure 3 gives the
complete T dependence of xs. Within experimental un-
certainty, the data imply a linear T dependence for the
normal fluid density from 30 to 5 K. The shape of this

FIG. 2. The change in penetration depth with respect to
l(5 K) for 5 , T , 25 K. Inset: Dl over a wider temperature
range.

curve depends, of course, on the exact choice of l�0�.
A choice of l�0� � 2600 Å [11] makes xs�T � more con-
cave up but does not affect the linear T behavior below
30 K. The slight curvature apparent in Dl is not evi-
dent in xs�T � and is presumably a signature of the inaccu-
racy of the approximation, xn�T � � 2Dl�T ��l�0� which
is strictly true only for very small Dl�T �. For a cylindri-
cal or spherical Fermi surface, xn ~ T is consistent with a
pairing state with line nodes [2] or an anisotropic s-wave

FIG. 3. The temperature dependence of the superfluid frac-
tion, assuming l�0� � 2100 Å. Inset: A closeup of the low
temperature region.

737

Figure 2.3: Superfluid density for

BSCCO, as shown in [17]. The typical

features of ρs in cuprates, namely the

XY-like transition and the linearity at

low T are evident.

Figure 2.4: taken from [19]. The su-

perfluid density for HBCCO (in open

circles) is quite consistent with a d-

wave pairing, as opposed to the BCS

theory which predicts an s-wave pair-

ing.

• It has been argued by many, starting from shortly after the discovery of
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HTSC, that the superconducting transition seems to be in the 3DXY

universality class. For instance Kamal et. al ([21]) verified that the

penetration depth in YBCO for a range of temperature is consistent

with a 3D XY critical behaviour, namely λ (T ) ∝
∣∣∣T−TcTc

∣∣∣−γ with γ ≈
0.33, which implies in eq. 2.25 δ ≈ 0.66. An identical behaviour has

been observed for BSCCO ([22]) and for optimally-doped LSCO ([23])

Moreover, as observed in [24] the London penetration depth for all cuprates

is consistently in the 0.1µm order of magnitude; on the other hand the Lon-

don penetration depth for superconductors correctly described by the BCS

theory is short, in the order of 0.01µm, as noticed in [25] for mono-elemental

superconductors. It follows that cuprates show a low superfluid when com-

pared to standard superconductors.

In conclusion of this section, it is worth mentioning an empirical relation

which holds for all cuprates, known as Uemura relation, according to

which the critical temperature of a cuprate depends linearly on the superfluid

density at T = 0, this dependence being universal for all cuprates in the

underdoped regime. In formulas:

Tc ∝ ρs (T = 0)

Such a correlation in experimental data, discovered by Uemura and cowork-

ers in 1989 is believed to catch fundamental insight about non-conventional

superconductivity, as it applies to various classes of non-conventional su-

perconductors (along with cuprates, also bismuthates, organic compounds,

heavy-fermion compounds) while not applying to BCS superconductors7.

A complete theory of superconductivity in cuprates must explain all those

differences between HTSC and BCS theories.

7An extended review of the Uemura relation and its scope of application can be found

in [26]





Chapter 3

High temperature

superconductivity in cuprates

3.1 Common features of the cuprates

The aim of this chapter is to introduce some basic chemical and physical

properties of the HTSC cuprates; this class of material encompasses a great

deal of different materials, which share a few key properties, while differing at

the same time for many other features. It is then very reasonable to assume

that the HTSC arises from the shared features, and that one is allowed, at

least in a first approximation, to overlook the details which are specific only

to one or few materials.

All of the HTSC cuprates share the following characteristics:

• An HTSC cuprate exhibits superconductivity at temperatures as high

as 135 ◦K, much higher than those of “standard” superconducting ma-

terials. The BCS theory can account for the onset of superconductivity

only for temperatures as high at 30 ◦K.

• In these materials the SC cannot be described within the framework

of the BCS theory. This claim is supported by many experimental

29
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observations, the most significant being:

– There is no electron-phonon interaction (see for instance [3]); this

reason alone would be enough to rule out any BCS-like SC.

– The order parameter is of dx2−y2 type so that it has d-wave sym-

metry, as opposed to the s-wave symmetry of BCS SC.

• The unit cell of a cuprate is composed of a number n of CuO2 layers

(see fig. 3.11), each one of these layers being a square lattice with

Cu atoms at each lattice site, and an O atom at midpoint between

each lattice site. These layer are separated by n − 1 mono-elemental

“spacer” layers. In addition to that, in many but not all cuprates

there are also other atoms above and below the aforementioned layers,

variously structured, which act as “charge reservoir”. It is customary to

orient the crystallographic axes so that the CuO2 planes lie in the a−b
plane, with the c axis perpendicular to those planes. The CuO2 planes

are widely believed to be the main seat of the superconductivity, while

the role of the other structures is debated. The lattice spacing for the

copper-oxygen layer is about 3.8 Å, while the length of the unit cell

along the c-axis can be as long as 15 Å.

• As a consequence of the chemical structure of the cuprates, their chemi-

cal formula can be written in the following form, as proposed by Leggett

in [3]:

(CuO2)nAn−1X

where A is an alkaline earth, rare earth, Y, La or a mixture of these el-

ements and X is an arbitrary collection of elements, which may contain

other coppers or oxygens. This expression is particularly convenient
1Image by James Slezak, released under Creative Commons BY-SA 3.0 license.
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because when one writes a cuprate’s chemical formula this way is mak-

ing its structure, in terms of CuO2 planes, “spacer” atoms A and the

charge reservoir X, immediately evident.

A few examples:

Common Standard
n

Notation as

name chemical formula proposed by Leggett

BSCCO Bi2Sr2CaCu2O8+δ 2 (CuO2)2CaBi2Sr2O4+δ

YBCO YBa2Cu3O6+δ 2 (CuO2)2YBa2CuO2+δ

LSCO La2-xSrxCuO4 1 (CuO2)La2-xSrxO2

HgBCO HgBa2Ca2Cu3O8 3 (CuO2)3Ca2HgBa2O2

NCCO Nd2-xCexCuO4 1 (CuO2)Nd2-xCexO2

∞-layer SrxCa1-xCuO2 1 (CuO2)SrxCa1-x

• Superconductivity ensues only when the material is doped, i.e. a small

amount of impurity is introduced in the form of a small excess or

defect of one element, or as a small amount of a different element

substituting part of the atoms of an element in the parent compound.

As a consequence the stoichiometric formula is now fractionary and

contains the doping amount as a parameter, e.g.:

Bi2Sr2CaCu2O8+x

for the material commonly referred to as BSCCO. The doping is fun-

damental to achieve superconductivity, nonetheless usually supercon-

ductivity ensues for small values of the doping, which bring us to an

almost perfect stoichiometry. An undoped cuprate is called “parent

compound” with respect to the same cuprate, when doped.

• The doping plays, as seen, a key role in the onset of HTSC, but at the

same time an equally important role is played by temperature. One
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can be more specific by drawing the phase diagram in terms of doping2

(x axis) and temperature (y axis), and will see that is strikingly similar

for all the cuprates.

Figure 3.2: The phase diagram, an universal feature for cuprates, from [27]

More specifically, all SC cuprates exhibit in their phase diagram a su-

perconductive dome which starts at δ ≈ 0.05 and ends at δ ≈ 0.27,

centered around the so-called optimal doping at x ≈ 0.15, which is the

doping value for which the SC can be achieved at the highest temper-

ature. The superconducting dome is universal in its shape once the y

axis is rescaled so that Tc −→ 1 at optimal doping. The regions with

lower and higher doping than the optimal value are respectively called

underoped and overdoped regions. Even outside the superconductive

dome, the properties of the cuprates are somewhat strange, and are far

from being fully understood:

– For sufficiently low doping3 and temperatures the system is a Mott
2For the phase diagram to be universal one must consider as doping only the holes

actually injected into the CuO2 planes.
3The zero doping condition is also referred as “perfect” stoichiometry.
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insulator; the spins are in a staggered (anti-ferromagnetic) con-

figuration to minimize the energy.

– The pseudogap (PG) regime is characterized mainly by a deple-

tion of states close to the Fermi surface, hence its name. From an

experimental point of view the PG regime is chacterized by the

appearance of a Fermi surface made of four disconnected arcs, as

seen in ARPES4 experiments; these arcs shrink down to just nodal

points as the temperature is lowered approaching the supercon-

ducting dome. This structure is intermediate between a full Fermi

connected surface at higher temperature and the nodal structure

in the SC state, and retains the same dx2−y2 symmetry of the SC

order paramter. The d.c. resistivity, probably the most studied

parameter for cuprates, is somewhat strange in the PG regime

regime: it decreases steeply, i.e. ρ (T ) ∝ Tα with 0 < α < 1

for intermediate temperatures and then diverges for T −→ 0. A

great deal of theories has been postulated in order to explain the

strange properties of the PG regime: according to some authors

it is a sort of precursor of SC, while according to others the PG

regime is to be explained separately.

– The PG and the strange metal (SM) regions are separated by

what is possibly a phase transition. On the contrary above the

underdoped zone of the phase diagram one has the SM and Fermi

liquid (FL) regions which are not separated by a transition; indeed

one sees that the description of the system diverge more and more

abruptly from a standard Fermi liquid description, by lowering

the doping, even before undergoing the PG/SM transition. For

instance the d.c. resistivity has a behaviour ρ (T ) ∝ Tα with α

varying continuously from α ∼ 2 in the FL regime to α ∼ 1 in the

4Angle-resolved photoemission spectroscopy
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SM region near optimal doping. It is interesting noting that for

the relation ρ (T ) ∝ T near optimal doping the intercept seems to

be very close to zero, and also the slope does not vary appreciably

between different cuprate compounds.

3.2 The t/J model in describing the physics of cuprates

Figure 3.1: The

unit cell for

BSCCO.

Let us go back to the description of cuprates in terms of

CuO2 planes, without any doping5. Each copper atom,

being in the 2+ oxidation state has all its orbitals com-

pletely filled, apart from the most energetic 2d(x2 − y2)

orbital which contains one unpaired electron. The oxy-

gen atoms, on the other side, being in the 2− oxidation

state have a complete octet and have their 2p shells com-

pletely filled. An equivalent description, which is more

functional to the aims of the present thesis, can be given

in terms of holes: one can equivalently say that at half-

filling (i.e. without any doping) there is a hole for each

copper site, while, on the other hand, no holes are present

on the oxygen atoms.

Moreover, four oxygens around a copper site hybridize

their p orbitals forming an hybrid orbital which has the

same symmetry of the central 3dx2−y2 Cu orbital. When

doping is added to the system, some additional holes are

introduced. It has been argued ([28]) that these addi-

tional holes are shared on the combination of the oxygen

p orbitals. To minimize the energy the spin of this hole is opposite to the

spin of the copper atom it surrounds, forming a spin singlet which is called

Zhang-Rice singlet.
5With respect to a doped cuprate, its undoped version is called “parent compound”
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Such a structure (four hybridized O orbitals surrounding a hole on a Cu)

is believed by many authors to be one of the main features which lead to

SC. One should also note that such a structure has an overlap (one oxygen

atom) with the very same structure centered on a neighbouring lattice site

and introduce a hopping probability for a Zhang-Rice singlet which allows it

to move in the anti-ferromagnetic background.

To sum up, if one wants to develop a theoretical model which accounts

for the dynamics of the clusters just described, must at least introduce the

following features6:

• A kinetic term, which takes into account the possibility for a hole to

jump to neighbouring site:

Hkinetic = −t
∑
〈i,j〉

(∑
α

c†iαcjα + h.c.

)

where each ci,α (c†i,α) destroys (creates) a hole on the i lattice site and

α is a spin index, α =↑, ↓

• An anti-ferromagnetic Heisenberg term take into account the fact that

the spin momenta of the Cu atoms prefer a staggered configuration in

the low-energy limit, the energetic cost to pay for aligning two neigh-

bouring spin being J :

HHeisenberg = J
∑
〈i,j〉

Si · Sj

here Si ≡
∑

α,β c
†
iα~σαβciβ is the spin of the i-th site.

• Lastly, we need to take into account the strong on-site repulsion on

each Cu site: the energy penalty for having two holes residing on the
6For a rigorous demonstration of how the low-energy physics of ZR singlets map to the

t/J model the reader is referred to [28].
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same oxygen site is about 10 eV, so that in first approximation one can

impose a no-double-occupancy constraint. Such a constraint is thereby

imposed by using the Gutzwiller projector:

PG ≡
∏
i

(1− ni,↑ni,↓)

The high non-linearity of PG is the main problem which hinders an

analytical solution for this category of problems.

In the end one can combine all these features together, obtaining an

hamiltonian which describes a model known as t/J model:

Ht/J =
∑
〈i,j〉

PG

[
−t
∑
α

c†iαcjα + h.c.+ JSi · Sj
]
PG (3.1)

The physics of this model depend strongly on the ratio t/J; from numer-

ical simulations one can see that the typical values for the parameters of the

t/J model in cuprates are: t ≈ 0.4 eV and J ≈ 0.13 eV. Alternatively the

very same model can be implemented in an equivalent way, more suited for

path-integral approaches, by writing down an equivalent Euclidean action in

terms of spin 1
2 Grassmann fermionic fields7:

St/J =

∫ β

0
dτ

∑
〈i,j〉

(
−J

2

∣∣Ψ∗i,αΨj,α

∣∣2 +
[
−t
(
Ψ∗i,αΨj,α + h.c.

)])
+

+
∑
i

Ψ∗i,α (∂0 + δ) Ψi,α +
∑
i,j

ui,jΨ
∗
i,αΨ∗j,βΨj,βΨi,α


(3.2)

here δ ≡ µ+ J
2 and a the no-double-occupancy constraint is imposed by

the potential ui,j , defined as follows:

7Eq. 3.2 can be derived from 3.1 by using the completeness relations for Pauli matrices

to rewrite the spin term and by adding the time derivative term.



3.2. The t/J model in describing the physics of cuprates 37

ui,j =


+∞, if i=j

−J
4 , if i,j are n.n.

0 otherwise

in this case the grand-canonical partition function can be written in terms

of the action in eq. 3.2:

Ξ (β, µ) =

∫
DΨDΨ∗e−S(Ψ,Ψ∗)

Moreover, we can use a Hubbard-Stratonovich transformation to decou-

ple the quartic interaction in 3.2, obtaining:

St/J =

∫ β

0
dτ

∑
〈i,j〉

(
2

J
X∗〈ij〉X〈ij〉 +

[(
−t+X∗〈ij〉

)
Ψ∗i,αΨj,α + h.c.

])
+

+
∑
i

Ψ∗i,α (∂0 + δ) Ψi,α +
∑
i,j

ui,jΨ
∗
i,αΨ∗j,βΨj,βΨi,α


Before developing an effective treatment for the t/J model it is worth

noting that the theory is invariant under a global SU (2) × U (1) group

of symmetry. The SU (2) symmetry is due to the invariance for spatial

rotations of the spin: a global rotation of spins will leave the Si · Sj scalar

products invariant. On the other hand the U (1) symmetry is due to global

charge conservation and corresponds to the action being left unchanged when

multiplying each fermionic field for a constant phase factor.





Chapter 4

A gauge approach to cuprates

The aim of this chapter is to introduce the theoretical framework and ap-

proximations starting from which an effective action for the system will be

derived. Through this effective treatment of the t/J model holon pairing,

spinon pairing and ultimately superconductivity will be studied in subse-

quent chapters. For a more thorough discussion the reader is referred to the

original papers, chiefly [29] and [7].

4.1 SU(2)× U(1) Chern-Simons bosonization

Bosonization is a procedure through which a system of interacting fermions

can be transformed in a completely equivalent boson system. For one-

dimensional systems the Jordan-Wigner bosonization achieves this result by

using the following mapping:

c†j −→ a†je
−iπ∑l<j a

†
l al (4.1)

where cj is a fermionic operator and aj is a hard-core bosonic operator.

The intuitive concept behind eq. 4.1 is that the new bosonic operator, to

correctly re-implement the original statistics, has to be attached to a “string”,

i.e. an object which counts, starting from −∞, how many exchanges the

39
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fermionic operator went through and restores the correct statistics.

The basic idea behind eq. 4.1 can be extended to higher dimensionality

systems, at the expense of introducing one or more gauge fields which will

provide the “counting factor” in eq. 4.1. Such a scheme is known as Chern-

Simons bosonization. Provided that the following conditions hold:

• The original fermionic theory is described in terms of spin 1
2 non-

relativistic hard core fermion fields in 2D position space.

• The fermions interact through a two-body spin-independent potential.

• An external abelian gauge field A is minimally coupled to the action.1

one is allowed to use a U(1)×SU(2) Chern-Simons bosonization scheme,

which will rewrite the theory as a function of newly introduced Φα (x) bosonic

fields, while introducing at the same time a U(1) gauge field, Bµ and a SU(2)

gauge field, Vµ ≡ V a
µ
σa

2 .

More specifically our bosonization scheme provides the following “recipe”

to rewrite the theory in terms of bosons:

• The action for the system has to be coupled to the newly introduced

gauge fields, and a kinetic term for the gauge fields must be added:

S(Ψ,Ψ∗|A) −→ S(Φ,Φ∗, A+B+ V ) + kU(1)SC.S.(B) + kSU(2)SC.S.(V )

(4.2)

for a suitable choice of the real coefficients kU(1) and kSU(2) and suit-

able boundary conditions2. The gauge kinetic terms appearing in the

bosonic action are:
1The following notation will be used: S (Ψ,Ψ∗|A) is the action obtained from S (Ψ,Ψ∗)

by minimally coupling A.
2The choice of the coefficients which determines the statistics of the Φ fields, will be

discussed later. For a thorough discussion of the choice of the coefficients and of the

boundary conditions see [30].
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SC.S. (B) =
1

4πi

∫ β

0
dx0

∫
dnxεµνρBµ∂νBρ

SC.S. (V ) =
1

4πi

∫ β

0
dx0

∫
dnxεµνρ tr

[
Vµ∂νVρ +

2

3
VµVνVρ

]
• The fermionic fields in the action in eq. 4.2 are to be replaced by

non-local bosonic fields bound to a string:

Ψα(x) −→ Φα (γx|B, V ) ≡ ei
∫
γx
BP

(
ei
∫
γx
V
)
αβ

Φβ (x)

Ψ∗α(x) −→ Φ∗α (γx|B, V ) ≡ Φ∗β (x) ei
∫
γx
BP

(
ei
∫
γx
V
)
βα

where γx is a string connecting point x to a fixed point placed at infinity

and P (#) denotes path-ordering.

• Finally, the partition function for the system is to be rewritten using

the following bosonization formula:

∫
DΨDΨ∗e−S(Ψ,Ψ∗|A) =

∫
DBDV

∫
DΦDΦ∗e−[S(Φ,Φ∗|A+B+V )+2SC.S.(B)+SC.S.(V )]∫
DBDV e−[2SC.S.(B)+SC.S.(V )]

where an adequate gauge fixing is implied in the right-hand side and

the coupling constants in eq. 4.2 have been chosen to be:

kU(1) = +2 kSU(2) = +1 (4.3)

To sum up, using the Chern-Simons bosonization scheme one can, upon

specific conditions, rewrite a fermionic in terms of non-local bosonic fields,

by introducing a number of additional minimally coupled gauge fields.

We still have to justify the choice of the gauge group and of the coupling

constants, which, at this point, may seems quite arbitrary.
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To justify the choice of the gauge group G = SU(2) × U(1) it is worth

showing the SU(2) and U(1) naturally gauge, respectively, the spin and

charge degrees of freedom. To see that, observing that the B0 and V0 terms

appear only linearly in the action, one can integrate them out obtaining the

following constraints:

j0(x) =
1

2π
ε0νρW

νρ(x) (4.4)

where j0 is density of the matter field, andW is the abelian (non-abelian)

field strength for B (V ). Taking for instance Bµ eq. 4.4 could also be rewrit-

ten as ∇ × B(x) ∼ ρ(x), meaning that a magnetic-like charge is assigned

to every matter particle, and that B can be indeed regarded as a magnetic

field.

On the other side, the choice in eq. 4.3 can be justified by noting that

this choice of coefficients when applying a 2D −→ 1D dimensional reduction

provides MFA results which are in accordance with the exact 1D solution for

the t/J model, obtained by Bethe-Ansatz or Conformal Field Theory (see

[31] and citations therein).

4.2 Spin-charge separation

As noted in the introduction it has been argued that the fundamental ex-

citations in cuprates should be particles carrying only charge or only spin,

called, respectively, holons and spinons; this assertion has been verified for

one-dimensional systems ([5] and [6]) and hints in this direction have also

been found for higher-dimensional systems ([32]). Starting from these re-

marks, the bosonic field Φxα can be formally be decomposed, through polar

decomposition, as the product of two fields

Φxα = ExΣxα (4.5)
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where Ex is a complex scalar boson describing the charge degrees of

freedom, while Σα is 2-component spin 1
2 complex boson describing the spin

degrees of freedom. The following constraint is imposed on Σα:

Σ∗xαΣxα = 1 (4.6)

The field Ex carries 2 degrees of freedom, Σα carries 4 degrees of degrees;

the constraint in eq. 4.6 takes one degree of freedom away and we are left

with 5 degrees of freedom. The original theory, when expressed in terms

of fermionic fields, had only 4 degrees of freedom, so some new invariance

must have been added to the theory while separating spin and charge. It

is indeed easily seen that the polar decomposition introduces a local U(1)

gauge invariance leaving Φxα and all other observables invariant:


Ej −→ Eje

iΛj

Σjα −→ Σjαe
−iΛj

Λj ∈ [0, 2π[

When fixing this gauge symmetry (which we will call h/s symmetry and

will leave, for the moment, exact) one restores the correct counting of the

degrees of freedom.

As already pointed out, the Bµ gauge field is naturally associated to the

charge degree of freedom, and Vµ is naturally associated the spin degree of

freedom, so that it see convenient to formally bind the charged E field the

the Bµ string and the Σ field to the Vµ string in the following way:

Φα (γx|B, V ) =
[
ei
∫
γx
BEx

] [
P
(
ei
∫
γx
V
)
αβ

Σxβ

]
Moroever one can further justify this decomposition by noting that, when

taken singularly, ei
∫
γx
BEx and P

(
ei
∫
γx
V
)
αβ

Σxβ are gauge invariant objects

by itself with semionic statistics3.
3A semion is an object which acquires a ±i factor upon exchange of two identical

particles. When regarding the statistical factor as a phase on the unitary circle, the
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At last, it is convenient to transform the charge-like excitations Ej in

hole-like excitations; this can be achieved by performing the following sub-

stitutions


Ej −→ H∗j

E∗j −→ Hj

(4.7)

where H and H∗ are Grassman fields. The statistical flux bound to Ej

has to be changed, too, namely setting kU(1) = −2. Finally, the theory is

described in terms of hole-like excitations, called holons, and charge-less

spin 1
2 particles, which we will call spinons.

As a side effect, the repulsive hard-core potential or the Gutzwiller pro-

jector are no longer needed, as Hj is a spinless fermionic field which auto-

matically enforces the no-double occupancy constraint.

As final result of this section one can rewrite the action for the system

in terms of holons and spinons as follows:

Ξ (β, µ) =

∫
DHDH∗DΣαDΣ∗αDBDVDXe−S(H,H∗,Σα,Σ∗α,B,V,X)δ (Σ∗Σ− 1)

(4.8)

and integrate out the X auxiliary variable, so that the Euclidean action

S (H,H∗,Σ,Σ∗, B, V ) now reads:

semion statistics are halfway between fermion and boson statistics, hence the name.
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S =

∫ β

0
dτ

{[
H∗j

(
∂0 − iB0(j)−

(
µ+

J

2

))
Hj + iB0(j)+

+
(
1−H∗jHj

)
Σ∗jα (∂0 + iV0(j))αβ Σjβ

]
+∑

〈ij〉

[(
−tH∗j ei

∫
〈ij〉BHiΣ

∗
iα

(
Pe

i
∫
〈ij〉 V

)
αβ

Σjβ + h.c.

)
+

+
J

2
(1−H∗i Hi)

(
1−H∗jHj

)(∣∣∣∣Σ∗iα (Pei
∫
〈ij〉 V

)
αβ

Σjβ

∣∣∣∣2 − 1

2

)]}
− 2SC.S.(B) + SC.S.(V )

(4.9)

4.3 Gauge fixings

It is clear that in order to give physical meaning to the functional integration

in eq. 4.8 one has to first gauge-fix the additional gauge symmetries of the

theory, namely:

• The U(1) h/s symmetry, introduced by the spin-charge separation.

• The SU(2) symmetry, corresponding to the spin degrees of freedom.

• The U(1) symmetry, corresponding to the charge degree of freedom.

Explicitely these symmetries correspond to the following transformations:

U(1)h/s :


Hj −→ Hje

iΛj

Σjα −→ Σjαe
iΛj

Λj ∈ [0, 2π[

(4.10)

SU(2)V :


Σj −→ R†(j)Σj

Vµ(x) −→ R†(x)Vµ(x)R(x) +R†∂µ(x)R(x)

R(x) ∈ SU(2)

(4.11)
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U(1)B :


Hj −→ Hje

iζj

Bµ(x) −→ Bµ(x) + ∂µζ(x)

ζj ∈ [0, 2π[

(4.12)

The h/s symmetry is left explicit and will be fixed at a later time. The

other two symmetries are fixed by the following gauge choices; for Bµ the

Coulomb gauge is chosen:

∂µB
µ = 0 µ = 1, 2

while the SU(2) is fixed by imposing a fixed configuration for the spinons,

the “Néel gauge condition”, leaving the V gauge field unconstrained:

Σj = σ|j|x

1

0

 Σ∗j = (1, 0)σ|j|x (4.13)

This “gauge choice” is particularly convenient as the low-energy physics

of spinons are dominated by an anti-ferromagnetic background which eq.

4.13 automatically enforces; obviously having fixed the spinon configuration

the relevant degrees of freedom are transferred to the gauge field V and

integrating over this field provides the necessary fluctuations around the

Néel anti-ferromagnetic configuration. The integration over V is then split

in the integration over a field V (c) constrained by a Coulomb gauge condition

(∂µV (c) = 0, µ = 1, 2) and over its SU(2) gauge transformations, expressed

with an SU(2)-valued scalar field g:

Va = g†V (c)
a g + g†∂ag a = 0, 1, 2

Fixing the gauge also provides some additional constraints for the gauge

fields. Specifically, by observing (as done in deriving eq. 4.4) that the time

components of the gauge fields appear linearly in the action, one can carry

out the functional integration, obtaining a δ (#) function which imposes a
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constraint on the other components of the field. For Bµ this procedure leads

to:

Bµ = B̄µ + δBµ δBµ(x) =
1

2

∑
j

H∗jHj∂µ arg (x− j) (4.14)

B̄µ being a static component giving a π-flux phase for plaquette, i.e.

ei
∫
∂p B̄ = 1. It is worth noting that a configuration for the B̄µ field which

respects the π-flux constraint must have a periodicity of 2 × 2 lattice site

and be arranged in a staggered way; a configuration which respects the

aforementioned flux constraint is not unique, its complete definition being

equivalent to completing the gauge fixing procedure for Bµ; our choice is

depicted in fig. 4.1. The additional periodicity for the B̄µ field effectively

defines the size of the magnetic Brillouin zone and will come into play when

analyzing holon pairing in chapter 5.

Figure 4.1: The staggered configuration for the π-flux B̄ field; each link

represents a ±π
4 phase, the sign being defined by the arrow direction. A ±π

flux passes through each plaquette.

As far as the SU (2) Vµ field is concerned, the integration yields:

V (c)
µ =

∑
j

(
1−H∗jHj

) (
σ|j|x g

†
j

σa
2
gjσ
|j|
x

)
11
∂µ arg (x− j)σa (4.15)
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4.4 Optimization of spinon configuration

The aim of this section is finding a holon-dependent spinon configuration

gm (H,H∗) which maximizes the partition function. This procedure can be

justified by noting that the spinon fluctuations have a much shorter time scale

than the holes, so that finding gm as a function of the holon configuration

kind of resembles separating the fast and slow variables of the system.

Provided that the following identifications are made:

iAj ∼
(
σ|j|x g

†
j∂0gjσ

|j|
x

)
11

U〈ij〉 ∼ e−i
∫
〈ij〉(B̄+δB)

[
σ|i|x g

†
i

(
Pe

i
∫
〈ij〉 V

(c)
)
gjσ
|j|
x

]
11

after fixing the gauge and imposing the constraints in eq. 4.14 and eq.

4.15 the action for the system can be recast as S = S1 + S2, where:

S1 = (H,H∗, A, U) =

∫ β

0
dτ

∑
j

[
H∗j (∂0 + δ)Hj + i

(
1−H∗jHj

)
Aj
]

+
∑
〈ij〉

(
−tH∗i U〈ij〉Hj + h.c.

)
S2 = (H,H∗, U) =

∫ β

0
dτ
∑
〈ij〉

(1−H∗i Hi)
(
1−H∗jHj

)(∣∣U〈ij〉∣∣2 − 1

2

)
A theorem due to Marchetti, Su and Yu [29] establishes an upper bound

for the partition function of the system described by S = S1 + S2, more

specifically let:

Ξ(A,U) =

∫
DHDH∗e−S(H,H∗,A,U)

it can be proven that:

|Ξ(A,U)| ≤
∫
DHDH∗e−[S1(H,H∗,0,Û)+S2(H,H∗,0)]
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where Û is the time independent configuration maximizing

∫
DHDH∗ e−[S1(H,H∗,0,U)+S2(H,H∗,0)]

∣∣∣
∂0U=0

It can be shown (a complete demonstration of the theorem stated above

can be found in [29], here the main results will be briefly summarized) that

it is possibile to find a spinon configuration gm which saturates this bound

on average, and then one can recover an exact treatment by adding the

fluctuations around gm.

Following the notation used in the original article, a generic spinon con-

figuration is then:

gj = ḡjRj g̃j = e−
i
2

∑
i6=j(−1)iσz arg(i−j)Rje

iπ
2

(−1)|j|σyH∗jHj

where the matrix Rj ∈ SU(2) represents the fluctuations, so that the

optimal configuration is given by Rj ≡ 1. Moreover it is convenient to

represent the fluctuations in CP 1 form, i.e. parametrizing the Rj ∈ SU(2)

as:

Rj =

bj1 −b∗j2
bj2 b∗j1

 b∗jαbjα = 1

where bα is a spin 1
2 field obeying the constraint b∗αbα = 1 at every site.

In addition to that, as a side effect of the spinon configuration optimization

procedure it can be seen that, as gm can be chosen to be diagonal at sites

without any holons, the SU (2) field in eq. 4.15 can be simplified as follows:

V (c) (x) =
∑
j

(
1−H∗jHj

) (−1)|j|

2
∂µ arg (x− j)σz

and can then be recast as V (c) = V̄ + δV , where δV is a fast-oscillating

term and V̄ is defined by:
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V̄ = −
∑
j

H∗jHj
(−1)|j|

2
∂µ arg (x− j)σz (4.16)

From a physical point of view eq. 4.16 describes a gas of vortices centered

on each holon site, with a +1 (-1) topological charge if the site is even (odd);

to justify this assertion one can imagine taking the curl of V̄ when only one

holon is present in the system at site j, observing that in this case:

εµν∂µV̄ν (i− j) ∼ δ (i− j)

At the end of the optimization procedure we can finally write an Eu-

clidean action for the system as S = Sh + Ss where:

Sh =

∫ β

0
dτ

∑
j

H∗j
[
∂0 −

(
σ|j|x R

†
j∂0Rjσ

|j|
x

)
11
− δ
]
Hj+

+
∑
〈ij〉

[
−tH∗j ei

∫
〈ij〉 δBHi

(
σ|i|x R

†
iPe

i
∫
〈ij〉(V̄+δV )Rjσ

|i|
x

)
11

+ h.c.
]
(4.17)

Ss =

∫ β

0
dτ

∑
j

(
σ|j|x R

†
j∂0Rjσ

|j|
x

)
11

+

+
∑
〈ij〉

J

2
(1−H∗i Hi)

(
1−H∗jHj

) [∣∣∣(σ|i|x R†iPei
∫
〈ij〉(V̄+δV )Rjσ

|i|
x

)
11

∣∣∣2 − 1

2

]
(4.18)

where δV ≡ V (c) − V̄ and it is understood that when constructing the

partition function from eq. 4.17 and 4.18 one integrates over H, H∗, R and

R†, the latter two taking values in SU(2).
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4.5 Approximations and effective action for spinons

Up to this point the treatment has always be kept exact4: the theory has

been conveniently rewritten in terms of different variables which will allow

us to put in practice a sensible mean-field approximation. The main ap-

proximation consists in neglecting the feedback of spinon fluctuations in the

gauge field V , i.e. setting:

δV = 0 (4.19)

It has been argued [33] that by neglecting the fluctuations in the gauge

fields one does not affect in an essential way the physics of the electrons;

however the statistics of the spinons are affected by the constraint in eq.

4.19, namely the gauge-invariant spinon field

P
(
e

i
∫
γj
V
)

Σj = e
i
∫
γj

(V̄+δV )
ḡjRjσ

|j|
x

1

0


is no longer a semion. For consistency, as the product of a spinon and a

holon has to be a fermion, one also has to neglect the holon feedback to the

gauge field Bµ, i.e.:

δB = 0 (4.20)

also changing the statistics for the gauge-invariant holon field e
−i
∫
γj
B
Hj ,

and restoring back the fermionic statistics for the electron.

In order to derive the low-energy physics of this model one can conve-

niently define the following matrix, with each entry defined on a lattice link:

4Except for the assumptions of small δ, large β in the derivation of the optimal spinon

configuration gm.
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R†ie
i
∫
〈ij〉 V̄Rj =

 α〈ij〉b∗i1bj1 + α∗〈ij〉b
∗
i2bj2 −α〈ij〉b∗i1b∗j2 + α∗〈ij〉b

∗
i2b
∗
j1

−α〈ij〉bi2bj1 + α∗〈ij〉bi1bj2 α〈ij〉bi2b∗j2 + α∗〈ij〉bi1b
∗
j1

 ≡
≡

 AMij −RV Bij
RV B∗ij AM∗ij


(4.21)

where α〈ij〉 ≡ e
i
2

∫
〈ij〉 V̄z . Moreover one can rewrite the spinon and holon

actions in eq. 4.17 and 4.18, writing the holon hopping term as:

t
∑
〈ij〉

H∗j e
∫
〈ij〉 B̄HiAMij (4.22)

and the spinon Heisenberg term as:

J

2

∑
〈ij〉

(1−H∗i Hi)
(
1−H∗jHj

)(
|RV Bij |2 −

1

2

)
(4.23)

This duality, i.e. the presence of both RV B-like and AM -like factors

will be discussed in detail in section 4.6 and is peculiar of our U (1)×SU (2)

model; for now we only note that, by definition, the identity |AMij |2 +

|RV Bij |2 = 1 holds.

It is clearly seen that the matrix in eq. 4.21 contains the fundamental

features of holon and spinon dynamics. As a last step before being able to

write down an effective action for the spinons and holons, as customary in

antiferromagnetic systems, one wants to separate the antiferromagnetic and

ferromagnetic fluctuations by introducing, respectively, the fields ~Q and ~L,

defined on a Néel sublattice5 as follows:

b∗jα~σαβbjβ ∼ ~Ωj + (−1)|j| ε~Lj (4.24)

5We need to define ~Q and ~L on a sublattice to maintain the right number of degrees

of freedom.
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and by the conditions: ~Ω2
j = f ∼ 1 and ~Ω · ~L = 0. At the same time

the system is rescaled to a lattice spacing ε � 1. This allows us to rewrite

the αij link variable by Taylor-series expansion using the lattice spacing ε as

parameter; up to the second order the expansion reads:

e
−i
∫
〈i,j〉 V̄z = 1 + ε

(
−iV̄z

)
(j) +

ε2

2

(
−iV̄z

)2
(j) +O

(
ε3
)

The Heisenberg term for spinons (from eq. 4.18) in the new variables on

the rescaled lattice now reads:

J

2

∑
〈ij〉

(1−H∗i Hi)
(
1−H∗jHj

)(
|AMij |2 −

1

2

)
=
J

2

∑
〈ij〉

1

2

(
~Ωi − ~Ωj

ε

)2

+ 2~L2
j + V̄ 2

z (j)
[
(Ωjx)2 + (Ωjy)

2
]+O (ε)

where the holon contribution in the l.h.s. has been treated as constant in

MFA and has been included, to the lowest relevant order in δ, by redefining

J −→ J̃ ≡ J (1− 2δ). On the other hand, the time-derivative term of eq.

4.18 reads:

−
(
σ|j|x R

†
j∂0Rjσ

|j|
x

)
11

=
ε

2
~Lj ·

(
~Ωj × ∂0

~Ωj

)
+O

(
ε2
)

Integrating out the ~L variables, taking the ε −→ 0 continuum limit and

replacing V̄ with its statistical average, one can derive an effective action for

spinons6:

S =

∫ β

0
dτ

∫
d2x

[(
∂0
~Ω
)2

+ v2
s

(
∂µ~Ω

)2
+

2

3

(
~Ω
)2
〈V̄ 2
z 〉
]

µ = 1, 2

with g ≡ 8
J̃
and vs ≡

√
2J̃a. Finally, a spin 1

2 bosonic hard-core field, zα

is introduced to rewrite ~Ω in CP 1 form:

~Ω = z∗α~σαβzβ z∗αzα = f (4.25)
6An unphysical topological θ-term has been left out and we assume rotational invariance

for the system.
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In terms of these newly-introduced fields an effective action for spinons

can be written as the action of a non-linear σ-model:

Ss =
1

g

∫ β

0
dτ

∫
d2x

[
|(∂0 − iA0) zα|2 − v2

s |(∂µ − iAµ) zα|2 +m2
s (δ) z∗αzα

]
(4.26)

An important feature appearing in the effective action is the emergent

self-generated U(1) field which, as we will see, is related to the continuum

version of the h/s symmetry:

Aµ ∼ z∗β∂µzβ (4.27)

While deriving the effective action for holons it will be clear that this

field effectively “binds” holons and spinons, as it is also evident by looking

at the transformations in eq. 4.10, upon which the spinon and holon fields

transform with opposite charge. On the other side the mass in eq. 4.26 is

generated by the lowest term which couples the SU(2) gauge field and the

spin, i.e.
(
~Ω
)2 (

V̄z
)2 when

(
V̄z
)2, dependent on the holon configuration, is

replaced by its statistical average:

〈V̄ 2
z 〉 = m2

s ∼ −δ ln δ

which defines the mass term.

4.6 Mean-field hamiltonian for the t/J model

For certain applications it will be more convenient working in the Hamilto-

nian formalism, aim of this section is writing down a MFA hamiltonian for

the system. Introducing the zα, z∗α fields as done in the previous section,

and adopting the notation in [7] one can define the entries of the matrix in

eq. 4.21 as:
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R†ie
i
∫
〈ij〉 V̄Rj =

χsij −∆s
ij

∆s∗
ij χs∗ij


and formally rewrite the actions in eq. 4.17 and 4.18 as:

Sh
(
H,H∗, b, b†

)
=

∫ β

0

dτ

∑
j

H∗j
(
∂0 −

(
b∗jα∂0bjα

)#(j) − δ
)
Hj+

+t
∑
〈ij〉

(
H∗j e

i
∫
〈ij〉 B̄Hiχ

s
ij + h.c.

)
(4.28)

Ss
(
H,H∗, b, b†

)
=

∫ β

0

dτ

∑
j

(
b∗jα∂0bjα

)#(j) J

2

∑
〈ij〉

(1−H∗i Hi)
(
1−H∗jHj

)(∣∣∆s
ij

∣∣2 − 1

2

)
(4.29)

having defined:

• The Affleck-Marston (AM) term: χsij ≡
(
z∗i e

iV Nij zj

)#(i)

• The Resonating Valence Bond (RVB) term: ∆s
ij ≡ εαβziα

(
eiV Nij σzzj

)
β

where the following shorthands have been used: V N
ij =

∫ j
i dxµV̄ z

µ (x) ≈
V̄ z
µ

(
i+j
2

)
aµ, a denotes the lattice constant and # (i) is the complex conju-

gation if i belongs to the odd Néel sublattice. As previously briefly stated

these two terms are a peculiar feature of our U(1) × SU(2) model; in fact

both an RVB and an AM factor appear at the same time, as opposed to

the slave boson/fermion approaches, the AM term regulating the t hopping

term of the t/J model and the RV B term regulating the J Heisenberg term.

The gauge field Vµ, being in the definitions of both χsij and ∆s
ij , regulates

both of the two relevant quantities of the t/J model.

The Hamiltonian for the system just discussed is now easily written by

discarding the temporal derivatives and introducing the field operators, as:
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Ĥt/J ≈t
∑
〈i,j〉

ĥ†je
iB̄ij ĥiχ̂

s
ij + h.c.+

+ µ
∑
i

ĥ†i ĥi +
J

2

∑
〈i,j〉

(
1− ĥ†i ĥi − ĥ

†
j ĥj

)
∆̂s
ij∆̂

s†
ij + ĥ†i ĥiĥ

†
j ĥj∆̂

s
ij∆̂

s†
ij

(4.30)

with the obvious meaning of the ∆̂s
ij and χ̂

s
ij operators, straightforwardly

derived from their field version.

4.7 Effective action for holons

An effective action for the holon part can be obtained can be obtain exactly

in the same way as for spinons; namely by separating the antiferromagnetic

and ferromagnetic contributions while rescaling the lattice, integrating out

the ferromagnetics degrees of freedom and taking the continuum limit.

Thanks to the slowly-varying nature of the V̄µ field, one can treat the

AMij factor, as defined by eq. 4.21, in MFA by approximating as follows:

〈α〈ij〉b∗i1bj1 + α∗〈ij〉b
∗
i2bj2〉 ≈ b∗i1bi1 + b∗i2bi2 = 1 (4.31)

In the aforementioned approximation the holon action in eq. 4.17 reads:

Sh =

∫ β

0
dτ

∑
j

H∗j
(
∂0 −

(
b∗jα∂0bjα

)#(j) − δ
)
Hj+

− t
∑
〈ij〉

e
i
∫
〈ij〉 B̄

{
H∗i Hj −H∗jHi

ε
+

+
(
H∗i Hj +H∗jHi

) [
b∗iα

(
bjα − biα

ε

)
−
(
b∗jα − b∗iα

ε

)
bjα

]#(j)
})

+O(ε)

(4.32)

The B̄ field, as the reader will remember, has been gauge-fixed to a stag-

gered π-flux configuration, as in fig. 4.1. It is then convenient to redefine the

field operators so that they are acting on four different sublattices, making
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explicit the periodicity in the Bµ field. Specifically, a lattice site (j1, j2) will

belong to the sublattice:

• (1), if both j1 and j2 are even.

• (2), if both j1 is odd and j2 is even.

• (3), if both j1 is even and j2 is odd.

• (4), if both j1 and j2 are odd.

The theory can then be redefined in term of the restrictionHi of the holon

field to the i-the sublattice; in terms of these fields the theory is described

by the following 4× 4 matrix:


∂0 − z∗α∂0zα − δ it (∂1 + z∗α∂1zα) −it (∂2 + z∗α∂2zα) 0

it (∂1 − z∗α∂1zα) ∂0 + z∗α∂0zα − δ 0 it (∂2 − z∗α∂2zα)

−it (∂2 − z∗α∂2zα) 0 ∂0 + z∗α∂0zα − δ it (∂1 − z∗α∂1zα)

0 it (∂2 + z∗α∂2zα) it (∂1 + z∗α∂1zα) ∂0 − z∗α∂0zα − δ


in which the ferromagnetic contributions have been integrated out and

the antiferromagnetic ones have been rewritten in terms of the newly-introduced

fields zα as done in equations 4.24 and 4.25. With the usual choice for the

γ matrices in two spatial dimensions γµ = (σz, σy, σx) , µ = 0, 1, 2, and by

further redefining the fields:

Ψ1 =

Ψ
(A)
1

Ψ
(B)
1

 =

e−iπ
4H(1) + eiπ

4H(4)

e−iπ
4H(3) + eiπ

4H(2)

 Ψ2 =

Ψ
(A)
2

Ψ
(B)
2

 =

e−iπ
4H(2) + eiπ

4H(3)

e−iπ
4H(4) + eiπ

4H(1)


(4.33)

and Ψ̄r = Ψ†rγ0, one can create a theory, described by two spinors whose

components are defined, respectively, on the even Néel sublattice and on the

odd Néel sublattice. Labelling the even and odd sublattices respectively with

A and B it is clear that: A = (1) + (4) and B = (2) + (3), giving physical
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meaning to the definitions in eq. 4.33. Such a theory makes manifest that

the effective action for spinons is ultimately a theory of Dirac-like fermions,

with charge ±1 given by the Néel sublattice they are on. By taking the

continuum limit (ε −→ 0) the effective action for the holons is:

Sh =

∫ β

0
dτ

∫
d2x

2∑
r=1

Ψ̄r [γ0 (∂0 − δ − erA0) + vFγµ (∂µ − erAµ)] Ψr

(4.34)

with the charge defined by: eA = +1, eB = −1 and µ = 1, 2. Once

again when writing the effective action the h/s symmetry, which has been

left exact, comes back in form of the gauge field Aµ, defined exactly as in

the spinon case in eq. 4.27 and “connecting” the holon and spinon actions

which would be otherwise fully independent from each other.

4.8 Symmetries of the total effective action for the

t/J model

The total effective action for the system S(zα, z
∗
α,Ψr, Ψ̄r, Aµ) can be simply

obtained by summing 4.26 and 4.34 as:

S =

∫ β

0
dτ

∫
d2x

1

g

[
|(∂0 − iA0) zα|2 − v2

s |(∂µ − iAµ) zα|2 +m2
s (δ) z∗αzα

]
+

+

2∑
r=1

Ψ̄r [γ0 (∂0 − δ − erA0) + vFγµ (∂µ − erAµ)] Ψr

(4.35)

It is to be noted that the original U (1)h/s×U (1)B×SU (2)V invariance

group has been depleted by the gauge fixing procedure, resulting in just

U (1)h/s remaining. As already noted this local U(1) gauge invariance is

expressed by the gauge field Aµ, and, explicitly, corresponds to the following

transformations:
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Ψr(x) −→ eierΛ(x)Ψr(x)

Ψ̄r(x) −→ e−ierΛ(x)Ψ̄r(x)

zα(x) −→ eiΛ(x)zα(x)

z∗α(x) −→ e−iΛ(x)z∗α(x)

Aµ(x) −→ Aµ(x)− ∂µΛ(x)

Λ(x) ∈ [0, 2π[

which, as can easily verified, leave the total effective action in eq. 4.35

invariant. We also note that if one were to neglect the Aµ gauge field in eq.

4.35, the dynamics of spinons of holons would be completely independent;

the gauge field Aµ is effectively a “gauge glue” between the holon and spinon

sectors.





Chapter 5

Holon pairing

5.1 Free holons

In order to analyze the holon pairing the free theory will be analyzed at first,

introducing the interaction term at a later stage. The physics of free holons

is described by eq. 4.28; here the modulus of χ̂sij appearing in the hopping

term:

t
∑
〈ij〉

(
H∗j e

i
∫
〈ij〉 B̄Hiχ̂

s
ij + h.c.

)
can be considered as constant, as shown by eq. 4.31, allowing one to

approximately rewrite the AM factor as χ̂sij =
∣∣∣χ̂sij∣∣∣ eiθij ∼ c · eiθij ; however

the phase brings a non-negligible spinon contribution to the holon dynamics,

and it is only temporarily neglected to be approximately reintroduced at a

later time by Peierls substitution. Again, this contribution is due to the h/s

symmetry effectively “binding” holons and spinons.

Under these assumptions, and by noting that the B̄ has no dynamics,

only providing a static π-flux phase, one can study holon pairing. In order

to do so it is convenient to decompose the lattice in two Néel sublattices,

A with even parity, and B with odd parity, as already done in the previous

61
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chapter. In the Hamiltonian formalism, the physics described by eq. 4.28

can be conveniently recast as:

Hh
0 = −t

∑
i∈A,r=1,4

[
eiπ

4
(−1)r+1

A†iBi+r + h.c.
]
− µ

∑
i∈A

A†iAi − µ
∑
i∈B

B†iBi

with r = (êx, êy,−êx,−êy), the Ai and Bi fields operators being defined

on the sublattices introduced above. It is worth noting that the phase factors,

chosen to reproduce the π-flux, can be interpreted as a hopping term e±iπ
4

between different Néel sublattices. When Fourier-transforming these fields

operators, it turns out that they are defined on the magnetic Brillouin zone,

rather than on the standard Brillouin zone. This diamond-shaped magnetic

Brillouin zone (MBZ), as shown in fig. 5.1 is half as big than the standard

Brillouin zone, because in position space each A and B operator is defined

on a 2a× a lattice.

Figure 5.1: From the diamond-shaped magnetic Brillouin zone (a) one can

build the rectangular zone (b) by “cut and pasting”, i.e. redefining the oper-

ators defined on the MBZ to operate on the rectangular zone. Each half of

the rectangular zone can be analyzed separately by assigning a L/R flavour

index.

Conveniently the Fourier-transformed operators Ak and Bk can be rede-
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fined to operate on a rectangular zone equivalent to the MBZ. The rectan-

gular zone can be generated with roto-translations of the third and fourth

quadrants, and the operators defined on this new domain will have, with

respect to the ones operating on the MBZ, at most a change of sign due

to the symmetries of the system; the reader is referred to fig. 5.1 Having

defined Q± ≡ (±π, π) one can define the following new field operators1:

ak =


Ak−Q+ if kx − π < 0, ky − π < 0

Ak−Q+ if kx + π < 0, ky − π < 0

Ak if ky ≥ 0

bk =


−Bk−Q+ if kx − π < 0, ky − π < 0

−Bk−Q+ if kx + π < 0, ky − π < 0

Bk if ky ≥ 0

and the Hamiltonian for free holons can be written as:

Ĥh
0 =

∑
k

(
tkâ
†
kb̂k + h.c.

)
− µ

∑
k

(
â†kâk + b̂†kb̂k

)
with tk = 2t

(
cos (kx) eiπ

4 + cos (ky) e
−iπ

4

)
. In order to derive the disper-

sion relation for free holons one may note that the Hamiltonian above can

be recast in the following form:

Ĥh
0 =

∑
k

âk
b̂k

†ω − µ t∗k

tk ω − µ

âk
b̂k


which immediately gives the dispersion relation for free holons:

ε (k) = ± |tk| − µ = ±t
√

cos2 (kx) + cos2 (ky)− µ

1Notation: lowercase operators are defined on the rectangular zone, uppercase opera-

tors are defined on the original magnetic Brillouin zone.
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from which one can see that the Fermi surface for free holons consists

of half-circles centered in the four nodal points (±π
2 ,±π

2 ) in the original

diamond-shaped magnetic Brillouin zone.

We can now further modify the domain of the field operators, by noting

that the rectangular zone can be divided according to the sign of kx in two

sub-zones; a flavour L (R) can be assigned to holons respectively in the

kx < 0 (kx ≥ 0) sub-zones. This “decomposition” is always exact as long as

we deal with non-interacting holons; when introducing an interaction term

one will have to demonstrate that the two flavours still do not mix. One

is then allowed to redefine once again the domain of the field operators to

half of the rectangular zone, i.e.
[
−π

2 ,
π
2

]
×
[
−π

2 ,
π
2

]
, provided that a flavour

index is introduced. With respect to the rectangular zone the momentum is

now measured from QR ≡ 1
2Q+ in the R zone, and from QL ≡ 1

2Q− in the

L zone, see fig. 5.1. After a final gauge transformation:


aα,k −→ aα,ke

i
θα,k

2

bα,k −→ bα,ke
−i

θα,k
2

with θα,k ≡ (−1)α
[
π
4 − arctan

(
kx
ky

)]
chosen to cancel out a phase fac-

tor, the Hamiltonian can be recast in the following form:

Hh
0 = Hh

0,R +Hh
0,L =

∑
α,k∈D

[
vF |k|

(
a†α,kbα,k + h.c.

)
− µ

(
a†α,kaα,kb

†
α,kbα,k

)]
(5.1)

with α = R,L, vF = 2t, D =
{
k| − π

2 < kx ≤ −π
2 ,−π

2 < ky ≤ −π
2

}

5.2 The interaction term and pairing

Let us now introduce the four-holon interaction term, which will provide the

attractive interaction needed for holon pairing. It can be read in the third

term of the effective hamiltonian for the system (eq. 4.30):
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J

2

∑
〈i,j〉

(
1− ĥ†i ĥi − ĥ

†
j ĥj

)
∆̂s
ij∆̂

s†
ij

by expanding the RVB factors to the first order2 and taking the spatial

average of the resulting V 2
µ factor one gets an interaction term which reads:

J̃〈z†z〉
∑
ij

(−1)|i|+|j|∆−1(i− j)ĥ†i ĥiĥ
†
j ĥj (5.2)

where ∆−1 is the 2D inverse lattice Laplacian. The fourth term in eq.

4.30 in neglected in the low-doping limit being proportional to δ2. The

spinon-realated factors can be treated in mean field approximation as follows,

calculating them from the free spinon spectrum:

J̃〈z†z〉 =

∫
d2q

1√
|q|2 +m2

s

= J̃
(√

Λ2 +m2
s −ms

)
≡ Jeff

so that the interaction term which now reads Jeff
∑

ij (−1)|i|+|j|∆−1(i−
j)ĥ†i ĥiĥ

†
j ĥj and is effectively the one of a 2D Coulomb gas, with particles

centered on each holon site, having +1 (−1) charge for being respectively

on an even (odd) lattice site. As opposed to all other terms in the theory,

it is worth noting that this is a long range interaction term, because i and

j not being constrained to be nearest neighbours. One should remember

that this term is a consequence of the series expansion of a term of the form

e
i
∫
〈ij〉 V appearing in the original action, so that it can be observed, as the Vµ

field describes the SU(2) vortices centered at each holon site, that the holon

attraction is indirect and mediated by the vortices dressing each holon, as

shown in fig. 5.2. In our theory this is the driving force for holon pair.

By using known results for the 2D Coulomb gas one can now estimate

the pairing temperature for holons, which is given approximately by:

2The expansion is done taking the lattice constant a as a parameter, so that is possible

to truncate consistently the Taylor-expansion after order 1.
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at low T thus gapping the gauge field through the Anderson-
Higgs mechanism and destroying the T -dependent skin effect
that decreases the coherence of hole and magnon.

Figure 1: Pictorial representation of the spin vortices dressing the holons rep-
resented by white circles at their center.

3. Superconductivity mechanism

The gluing force of the proposed superconductivity mecha-
nism is a long-range attraction between spin vortices centered
on holons in two different Néel sublattices. Therefore its origin
is magnetic, but it is not due to exchange of AF spin fluctua-
tions as e.g. in the proposal of [4], [5] . Explicitely the relevant
term in the effective Hamiltonian is:

J(1 − 2δ)〈z∗z〉
∑

i, j
(−1)|i|+| j|∆−1(i − j)h∗i hih∗jh j, (3)

where ∆ is the 2D lattice laplacian and

〈z∗z〉 ∼
∫

d2q("q2 + m2s )−1 ∼ (Λ2 + m2s)1/2 − ms, (4)

with Λ ≈ 1 as a UV cutoff. We propose that, lowering the
temperature, superconductivity is reached with a three-step pro-
cess: at a higher crossover a finite density of incoherent holon
pairs are formed, at a lower crossover a finite density of in-
coherent spinon RVB pairs are formed, giving rise to a gas of
incoherent preformed hole pairs and a gas of magnetic vortices
appears in the plasma phase, at a even lower temperature both
the holon pairs and the RVB pairs, hence also the hole pairs, be-
come coherent and the gas of magnetic vortices becomes dilute.
This last temperature identifies the superconducting transition.
Clearly this mechanism relies heavily on the ”composite” struc-
ture of the hole appearing in the ”normal” state. Let us analyze
in a little more detail these three steps.

4. Holon pairing

At the highest crossover temperature, denoted as

Tph ≈ J(1 − 2δ)〈z∗z〉, (5)

a finite density of incoherent holon pairs appears, as conse-
quence of the attraction of spin vortices with opposite chirality.
We propose to identify this temperature with the experimen-
tally observed (upper) pseudogap (PG) temperature, where the

in-plane resistivity deviates downward from the linear behavior.
The formation of holon pairs, in fact, induces a reduction of the
spectral weight of the hole, starting from the antinodal region
[6]. The mechanism of holon pair formation is BCS-like in the
sense of gaining potential energy from attraction and losing ki-
netic energy, as shown by the reduction of the spectral weight.
As natural due to its magnetic origin, its energy scale is how-
ever related to J and not t, since the attraction originates from
the J-term of the t-J model. We denote the BCS-like holon-pair
field by ∆h.

5. Spinon pairing and incoherent hole pairs

The holon pairing alone is not enough for the appearence of
superconductivity, since its occurence needs the formation and
condensation of hole pairs. In the previous step instead we have
only the formation of holon-pairs. One then firsty needs the for-
mation also of spinon-pairs. It is the gauge attraction between
holon and spinon, that, roughly speaking, using the holon-pairs
as sources of attraction induces in turn the formation of short-
range spin-singlet (RVB) spinon pairs (see Fig.2).

Figure 2: Pictorial representation of hole pairs, holons are represented by white
circles surrounded by vortices, spinons by black circles with spin (arrow); the
black line represents spin-vortex attraction, the dashed line the gauge attraction

This phenomenon occurs, however, only when the density
of holon-pairs is sufficiently high, since this attraction has to
overcome the original AF-repulsion of spinons caused by the
Heisenberg J-term which is positive in our approach, in con-
trast with the more standard RVB [7] and slave-boson [8] ap-
proaches. Summarizing, at a intermediate crossover tempera-
ture, denoted as Tps, lower than Tph in agreement with previous
remarks, a finite density of incoherent spinon RVB pairs are
formed, which, combined with the holon pairs, gives rise to a
gas of incoherent preformed hole pairs. We denote the RVB
spinon-pair field by ∆s. It turns out that for a finite density of
spinon pairs there are two (positive energy) excitations, with
different energies, but the same spin and momenta. They are
given, e.g., by creating a spinon up and destructing a spinon
down in one of the RVB pairs. The corresponding dipersion
relation, thus exhibits two (positive) branches (see Fig.3):

ω("k) = 2t
√
(m2s − |∆s|2) + (|"k| ± |∆s|)2. (6)

2

Figure 5.2: The long-range attraction between holons on different sublattices

is due to the SU(2) vortices with opposite chirality surrounding each holon

site.

Tph ≈
Jeff
2π

and the interaction potential in momentum space in the large scale limit

will take the following form:

Veff (p) =
Jeff

|p|2 + `−2
s

(5.3)

so that the interaction term is now given in momentum space by:

Hh
I ∼ −

∑
p1,p2,q1,q2

Veff (q1 − q2)× δ (p1 − p2 + q1 − q2) â†p1
b̂†q1

b̂q2 âp2

the interaction being written using then L/R flavour indices introduced

in the previous section, as it can be seen that even in this interacting case the

form of Veff in eq. 5.3 discourages interactions between different flavours.

By standard BCS treatment one can then obtain the mean-field hamilto-

nian which describes holon pairing, by adding the BCS-like interaction term

to eq. 5.1, which yields:
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Hh
α = Hh

0,α +
∑
k

(
∆h
α,kâ

†
α,kb̂

†
α,−k + h.c.

)
the modulus of the order parameter ∆h

α,k being defined by the gap equa-

tion:

∆h
α,k =

∑
q

Veff (k− q)
∆h
α,q

2εα,q
tanh

(εα,q
2T

)

Figure 5.3: Numerical solution for the spinon gap equation, for different

values of `s.

The gap equation can be solved numerically, the results for various screen-

ing lengths are shown in fig. 5.3. At last one may want to find the dispersion

relation for the interacting holons, in order to do so it is convenient to intro-

duce a four-component spinor field and a 4× 4 matrix as follows:

Nα,k =


aα,k

bα,k

a†α,−k

b†α,−k

 Hk =


−µ vFk 0 ∆h

k

vFk −µ −∆h
−k 0

0 −∆h∗
−k µ −vFk

∆h∗
k 0 −vFk µ


so that the holon pairing Hamiltonian can be recast as:
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Hh,α =
∑
k

N †α,kHα,jNα,k

where vF ≡ 2t. Assuming that the order parameter has p-wave symme-

try:

∆h
k =


∆h(k)

kx−ky
k α = R

∆h(k)
−kx−ky

k α = L

Hk can be block-diagonalized so that the dispersion relation can be writ-

ten as follows:

εα,k = ±
√

(vFk ± µ)2 +
∣∣∣∆h

α,k

∣∣∣2 (5.4)

It is to be noted that this dispersion relation for interacting holons has

four branches: the highest one and the lowest one are completely decoupled

and can be neglected in a low-energy description of the system; this assertion

is tantamount to saying that of the four components of Nα,k only two are

relevant in the low-energy limit, so that one can describe the theory in terms

of the field ψα,k = 1√
2

(aα,k + bα,k) and its hermitean conjugate as:

Hh =
∑
α,k

 ψα,k

ψ†α,−k

†vFk − µ ∆h∗
α,k

∆h
α,k −vFk + µ

 ψα,k

ψ†α,−k


which allows one to obtain, as expected, the low-energy version of eq.

5.4

εα,k = ±
√

(vFk − µ)2 +
∣∣∣∆h

α,k

∣∣∣2 (5.5)

Moreover, recalling the redefinitions of the domain for the field operators

and the modifications to the magnetic Brillouin zone which were made when

discussing free holons dynamics, one can note that the order parameter is

defined on half the rectangular zone and may want to go back to the original
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magnetic Brillouin zone. As firstly observed in [34] the p-wave symmetry

for the order parameter around each Dirac cone is responsible for a d-wave

symmetry in the Brillouin zone; one can explicitly see, indeed, that in the

MBZ, in the vicinity of the nodal points (±π
2 ,±π

2 ) one has:



∆h
k ≈ v∆

kx−ky√
2

in quadrant I

∆h
k ≈ v∆

−kx−ky√
2

in quadrant II

∆h
k ≈ v∆

−kx+ky√
2

in quadrant III

∆h
k ≈ v∆

kx+ky√
2

in quadrant IV

with explicit d-wave symmetry, having defined v∆ =
√

2
∆h

0 (kF )
kF

, ∆h
0 =∣∣∆h

∣∣ and a new coordinate system centered on the nodal points:

k+ ≡
kx + ky√

2
k− ≡

kx − ky√
2

5.3 Nodal Hamiltonian and gauge effective action

By noting that the spectrum in eq. 5.5, can also be obtained by the following

4× 4 matrix, which is again written in terms of the ψk fields introduced in

the previous section:

Hh1st,nodal = vFk+σz + v∆k−σy

one may think of this theory as an approximation for the full holon

Hamiltonian, valid at leading order in the vicinity of nodal points and for

low-energy. Restoring the h/s symmetry by Peierls substitution, and intro-

ducing the space-dependent phase for v∆ (i.e. a phase for the holon order

parameter), one obtains:

Hh1st =

vF (−i∂+ −A+) +A0 −v∆e
iφh∂−

v∆e
−iφh∂− vF (i∂+ −A+)−A0

 (5.6)
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having defined ∂± ≡ 1√
2

(∂x ± ∂y); the space-dependent phase needs to be
reintroduced at this point to maintain the h/s gauge invariance, however it

does not break the nodal structure for holons, justifying the nodal treatment

of the present section. Hh1st is only valid for the first quadrant, and can be

extended to the whole MBZ by repeated rotations. The effective action3 for

this model is a QED3 action:

L1st = χ̄ [γµ (∂µ − ibµ1st)]χ

having defined γµ = {σx, σy, σz}, ∂µ = {∂0, ∂+, ∂−}, bµ1st = {−ia+, ia0, 0},
and having introduced the gauge-invariant nodal fields χ, χ̄ ≡ χ†γ0 and

aµ ≡ Aµ − 1
2∂µφ

h. The action can be integrated as far as the nodon fields

are concerned and the leading terms of Seff [aµ] = − ln det [γµ (∂µ − ibµ)]

can be calculated to be:

Sheff [aµ] =

∫
d3k

a0Ξ00a0 +
∑
i=1,2

aiΞiiai


Ξ00 ∼ c1ω Ξii ∼ c2

(5.7)

for suitable positive constants c1, c2. These terms will be used to intro-

duce, in an approximated way, the holon contribution to spinon pairing in

the next chapter.

3Again, only the first quadrant is considered, and again the treatment can easily be

extended to the whole MBZ by repeated rotations.



Chapter 6

Spinon pairing and

superconductivity

6.1 Preliminaries

Spinon pairing can be studied by taking into account the four-holon interac-

tion term, i.e. the last term in eq. 4.30. This term has been neglected so far,

being proportional to δ2 in absence of a finite density of holon pairs; more-

over as noted in [7] this term is repulsive for spinons if J > 0, which is the

case, so that the spinon pairing must be mediated by an indirect mechanism.

As already anticipated the driving force for spinon pairing is the h/s gauge

interaction, which is indeed attractive and works as outlined in fig. 6.1: as

the temperature is lowered each of the two holons in a preformed holon pair

becomes able to separately attract a spinon through the h/s gauge interac-

tion, so that the mechanism ultimately leads to the formation of spinon-RVB

pairs,

The aforementioned four-holon interaction term can rewritten using a

Hubbard-Stratonovich transformation to decouple the quartic interaction for

spinons, while treating at the same time the holons in MFA, giving rise to

the following term:

71
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Figure 6.1: The indirect mechanism leading to spinon paring and to hole

pairing; the white dots represent two holons, surrounded by vortices, the

solid black line representing the attractive interaction between vortices on

different Néel sublattices. The green dots are spinons, with the dashed black

lines representing the gauge-mediated holon-spinon interaction.

−
∑
〈ij〉

2
∣∣∣∆s

ij

∣∣∣2
Jτ2

+ ∆s∗
ij ε

αβziαzjβ + h.c.

where τ ≡
∣∣∣〈ĥiĥj〉∣∣∣ and the spinon order parameter ∆s

ij is defined as

follows (one must be careful noting that ∆s
ij and ∆̂s

ij and defined quite dif-

ferently, not being simply the field and operator version of the same object):

∆s
ij =

Jτ2

2
〈εαβ ẑiαẑjβ〉

Taking the continuum limit, using the exact same procedure which leads

to eq. 4.26, the emergent gauge field Aµ ∼ zβ∂µzβ which accounts for the

h/s is again self-generated, and the lagrangian for spinons in real space now

reads1:
1To rewrite the RVB-like factor in the continuum limit one should note that:

εαβziαzjβ = εαβziα (zjβ − ziβ) −→ aεαβzα∂µzβ = a2
(
εαβ

zα∂µzβ
a

)
having defined µ as
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Ls =
∑

µ=0,1,2

z∗α
[
(∂µ − iAµ) +m2

s

]
zα +

∑
i=1,2

∆s∗
i (x) εαβzα∂izβ + h.c.

with ∆s
ij , defined on a lattice link, now being replaced by ∆s

i (x) defined

on the continuum with i = {êx, êy} being the spatial direction2. Following

[7] ∆s can be decomposed separating modulus and phase. The modulus is

dependent only on the spatial position, while the phase is dependent only

on the direction, so that:

∆s
i (x) = ∆i,0e

iφs(x)

We note that the theory is invariant for the h/s U(1) local gauge sym-

metry which has been left explicit so far and now takes the form:


zα −→ zαe

iΛ

Aµ −→ Aµ + ∂µΛ

φs −→ φs + 2Λ

Λ(x) ∈ [0, 2π[ (6.1)

Also the emergent Aµ gauge field “connects” this symmetry to the holon

sector, so one may easily convince themself by looking at eq. 5.6 that in

extending the symmetry to the whole system the following transformations

must also be added to the ones in eq. 6.1:


H −→ HeiΛ

φh −→ φh + 2Λ

Λ(x) ∈ [0, 2π[ (6.2)

the direction from the i site to the j site.
2With respect to eq. 4.26 g and vs have been set to 1 for convenience. The other

difference lies in the second sum, i.e. the four-holon interaction term opportunely treated,

which has been discarded in eq. 4.26 and can no longer be discarded when discussing

spinon pairing.
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One may want, for the sake of conveniency, to rewrite the theory us-

ing h/s gauge invariant fields; this result may be achieved by defining the

following spinon fields:

z̃1 ≡ z1e
iφs z̃2 ≡ z∗2e−iφs

and the following gauge/phase fields:

aµ ≡ Aµ −
1

2
∂µφ

h φ ≡ φh − φs (6.3)

It is readily seen that all these objects are gauge invariant for the U(1)

h/s gauge group and that the Lagrangian for the system, after having defined

the doublet Z = (z̃1, z̃2)T , can be rewritten as:

Ls = Z† (x) Γs (x)Z (x) (6.4)

where the 2× 2 matrix Γs is defined by3:

Γs =
∑

µ=0,1,2

[
∂µ − i

(
aµ −

1

2
∂µφ

)
σz − i Im

(
∆s
µ,0

)
σx − i Re

(
∆s
µ,0

)
σy

]2

+m2
s−
∣∣∆s

µ,0

∣∣2
(6.5)

By neglecting the gauge fluctuations, one can derive the dispersion rela-

tion for spinons by imposing det (Γs)|aµ=0,φ=0 = 0. In momentum space one

gets:

0 =
(

(−ikµ)2 +m2
s

)2
+ 4

∑
µ,ν

∆s
µ,0∆s∗

ν,0 (−ikµ) (−ikν) = · · ·

· · · =
(

(−ikµ)2 +m2
s

)2
− 4

∑
µ,ν

∆s
µ,0∆s∗

ν,0kµkν

from which it is immediate finding an implicite form for the dispersion re-

lation
(
−ω2 + |k|2 +m2

s

)2
−4
∑

i,j=1,2 ∆s
i,0∆s∗

j,0kikj = 0. By using rotational

3The time component of ∆s
µ,0 is defined as zero, i.e. ∆s

µ,0 ≡
(
0,∆s

i,0

)
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invariance for the system, which implies ∆s
i,0∆s∗

j,0 + ∆s∗
i,0∆s

j,0 = 2δij

∣∣∣∆s
i,0

∣∣∣2
one can choose ∆s

1,0 = ∆s
0 and ∆s

2,0 = i∆s
0 for a constant complex number

∆s
0. Solving for ω one readily obtains the dispersion relation:

E± (k) =
√

k2 +m2
s ± 2 |∆s

0| |k| (6.6)

The two branches of the dispersion relation, the lower showing quite a

peculiar minimum, are shown in fig. 6.2.

Figure 6.2: Spinon spectrum for δ = 0.1.

6.2 Gauge effective action for spinons

It is convenient to recast eq. 6.4 by introducing a fictitious SU(2) gauge

field Yµ. The matrix Γs can be equivalently written as:

Γs =
∑

µ=0,1,2

(
∂µ − iY a

µ

σa
2

)2
+M2

provided that the fictitious mass M is defined as M ≡
√
m2
s − 2 |∆s

0|2

and the fictitious gauge field is defined as:
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Y a
µ =


0 0 a0 + ∂0φ

Im
(
∆s

1,0

)
Re
(
∆s

1,0

)
a1 + 1

2 ∂1φ

Im
(
∆s

2,0

)
Re
(
∆s

2,0

)
a2 + 1

2∂2φ


One can then integrate out the spinon fields in eq. 6.4 and obtain an

effective action written only in terms of the gauge field aµ, the modulus of

the order parameter ∆s
0 and the derivative of the electron phase ∂µφ:

Sseff [aµ,∆
s
0, ∂µφ] = ln det (Γs)−

2 |∆s
0|2

Jτ2
(6.7)

One can then Taylor-expand Seff :

Sseff ≈ Ss,0eff [0, 0,∆s] + Ss,2eff [∂µφ, aµ,∆s] + ... (6.8)

The action can then be written as a Taylor expansion in the number of

fields; the zeroth order term can simply be found by setting aµ = 0 = ∂µφ.

The higher-order terms actually are highly constrained by gauge and rota-

tional invariances: it can be easily seen that no first order terms satisfies

these requests and that the only acceptable second order term is (propor-

tional to) tr [fµνf
µν ] + const, fµν being the field strength for Yµ. The two

terms are derived as follows:

• The former can be obtained by simply setting aµ and φ to zero in the

fictitious gauge field Yµ, so that:

Y a
µ = 2


0 0 0

Im
(
∆s

2,0

)
Re
(
∆s

1,0

)
0

Im
(
∆s

2,0

)
Re (∆s

0) 0


and taking the determinant in momentum space:

Ss,0eff =
∑
k

ln det

[(
kµ − Y a

µ

σa
2

)2
+M2

]
=
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=
∑
ω,k

ln

[(
ω2 + |k|2 +M2 + 2 |∆s

0|2
)2
− 4 |∆s

0|2 |k|2
]

=

=
∑
ω,k

ln
[(
ω2 + E2

− (k)
) (
ω2 + E2

+ (k)
)]

• As far as the latter term is concerned, it is proportional to the field

strength up to an additive constant, i.e. the field strength may not go

to zero when the fields go to zero, as one is entitled to expect from a

“fluctuations” term. So we start by calculating the field strength:

fµν =
1

i
[Dµ, Dν ] = −i

[
∂µ + i∂µφ

s − iY a
µ

σa

2
, ∂ν + i∂νφ

s − iY a
ν

σa

2

]
= · · ·

· · · = (∂µ∂νφ
s − ∂ν∂µφs)−

σc
2

[
∂µY

c
ν − ∂νY c

µ + εabcY a
µ Y

b
ν

]
︸ ︷︷ ︸

≡yaµν

Due to the properties of the Pauli matrices (namely σ2
a = 1) we have:

Ss,2eff = λ tr [fµνf
µν ] = λ (∂µ∂νφ

s − ∂ν∂µφs)2 +
λ

4
yaµνy

a
µν

and the last term can be evaluated by using the fact that Y x,y
µ is

uniform in space:

1

2
yaµνy

a
µν =

[
2 (∂1a2 − ∂2a1) + 2 (a0 + ∂0φ)2 + (a +∇φ)2

]
+[∂µaν − ∂νaµ]2+|∆s

0|4

Clearly |∆s
0|4 is the constant term which need to be discarded, by

imposing the request tr [fµνf
µν ]|aµ=0=φs=φ = 0, however it is useful

to set the global multiplicative constant λ, by matching the Taylor-

expansion in |∆s
0| at the fourth order the multiplicative constant turns

out to be: λ = (3πM)−1.
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To sum up, spinon pairing can be studied by Taylor-expanding the ef-

fective action in eq. 6.7 in the number of fields. An expansion up to the

second order is able to include gauge fluctuations, so that the spinon pairing

is correctly reproduced; the first two terms of the expansion are4:

Ss,0eff = −2 |∆s
0|2

Jτ2
+
∑
ω,k

ln
[(
ω2 + E2

− (k)
) (
ω2 + E2

+ (k)
)]

(6.9)

Ss,2eff =
1

6πM

{
[∂µaν − ∂νaµ]2 + |∆s

0|2
[

2

(
a0 +

1

2
∂0φ

)2

+

(
a +

1

2
∇φ
)2
]}

(6.10)

The latter term is a three-dimensional anisotropic gauged XY model and,

as we will see, plays a key role in determining the superconducting transition.

Here we remind that the 3D XY model, to which 6.10 is essentially equivalent

under appropriate assumptions which will be discussed and demonstrated

later, shows two phases:

• For large enough temperature (or for small enough |∆s
0|2, as |∆s

0| is
monotonically decreasing function of temperature) the model is in a

vortex-antivortex5 proliferation state; the phase fluctuate strongly and,

as a result, 〈eiφ〉 = 0. We will refer to this phase as the Coulomb phase.

• For small enough temperature the creation of a new vortex-antivortex

pair is no longer energetically favorable; the fluctuations for the φ field

are exponentially suppressed so that 〈eiφ〉 6= 0 and, finally, SC onsets.

We will refer to this phase as the broken symmetry phase, also called

Higgs phase.

4An unrelevant surface term has been discarded in Ss,2eff .
5Being this a 3D model one should rigorously speak of “vortex lines” and “antivortex

lines”
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6.3 Gap equation for spinons

As noted, the direct interaction between spinons is repulsive; so that the

pairing must be described by also taking into account the gauge fluctuations,

namely the term Ss,2eff in eq. 6.8. As discussed in [7] and citations therein,

the correct procedure to get the gap equation is starting from the partition

function while neglecting the phase fluctuations; i.e. one wants to find the

saddle point point of Sseff [a,∆s
0] = Ss,0eff [∆s

0] + Ss,2eff [a,∆s
0] + Sheff [a] where Sh

is the contribution from the holon sector, namely from eq. 5.7. The aim of

this section is to calculate the free energy for the system, from which the

gap equation can be calculated; it is clearly seen that the contribution to

the free energy from Ss,0eff [∆s
0] is readily calculated. On the other hand the

contribution for Ss,2eff + Sh involves a calculation which will now be carried

out; we will refer to this contribution as the “gauge” contribution to free

energy. The gauge partition function is then6:

Zg =

∫
Daµe−

∫
d3xLg [aµ] Lg =

1

3πM

[
aµ
(
−∂2gµν + ∂µ∂ν +mµν

)
aν
]

with the following “pseudo-mass” matrix:

mµν =


|∆s

0|2 + c̃2 0 0

0
|∆s

0|2
2 + f (k) 0

0 0
|∆s

0|2
2 + f (k)

 (6.11)

The holon contribution is clearly included in c̃2 = 3πMc2 and in f (k) =

3πMc1

√
v2
Fk

2
+ + v2

∆k
2
−, which are taken from 5.7. It is now convenient using

the transformation in 6.3 for the gauge field aµ, which along with the gauge

transformations in eq. 6.1 and 6.2, allows one to rewrite the gauge partition

function Zg and the lagrangian Lg as follows:

6Using the usual Euclidean metric gµν = diag (1, 1, 1)
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Lg =
1

3πM
Aµ
(
−∂2gµν + ∂µ∂ν +mµν

)
Aν −

1

4
φh∂µm

µν∂νφ
h + φhmµν∂µAν

Zg =

∫
DAµDφhe−

∫
d3xLg

(6.12)

The gauge partition function in eq. 6.12 clearly needs the gauge to be

fixed, as the h/s symmetry has been kept exact up to this point. A conve-

nient choice of the gauge fixing function is F = −mµν∂µAν + 1
2φ

h, which

allows one to decouple the Aµ and φh terms so that the functional can be

evaluated integral after having completed the Faddev-Popov gauge-fixing

procedure:

Zg =

∫
DAµDφh

∣∣∣∣δFδΛ
∣∣∣∣ e− ∫ d3x 1

3πM (AµKµνAν+ 1
4
φhDφh) (6.13)

where Kµν and D are defined as follows:

Kµν = −∂2gµν + ∂µ∂ν +mµν −mµµ′mνν′∂µ′∂ν′

D = −mµν∂µ∂ν + 1

The result of the functional integral is then:

Zg =
∏
ω,k

(3πM)
3
2(

ω2 + |k|2 +m11
) 1

2
(
ω2 + m11

m00 |k|2 +m11
) 1

2

(6.14)

It is now straightforward to get the free energy Fg, summing the contri-

bution from eq. 6.14 and the contribution from Ss,0eff :

1

V
Fg [∆s

0] ≈ 1

βV

∑
ω,k,σ=±

ln
(
ω2 + E2

σ (k)
)
− 3Λ3

4

[
lnm2

s −
2 |∆s

0|2
m2
s

]
−Λ2 |∆s

0|2
Jτ2

and the gap equation, by deriving the free energy Fg with respect to |∆s
0|:
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0 =
2Λ

3m2
s

− Λ2

Jτ2
− 1

2 |∆s
0|V

∑
k

 |k|
E− (k) tanh

(
E−(k)

2T

) − |k|
E+ (k) tanh

(
E+(k)

2T

)


(6.15)

Some numerical solutions for the gap equation for spinons, at different

copings, are shown in fig. 6.3, the physical meaning of the gap and its role

in the onset of superconductivity will be discussed in the following section.

13

As the doping δ is decreased, τ goes to zero faster
than ms, because the spinon mass m2

s ∼ |δ ln δ| and
τ2 ∼ δe−const.(see Eq. (34)), which implies that |∆s

0| has
no nonzero solution for sufficiently small doping. In other
words, there is a critical doping δc at zero temperature,
below which spinon pairing ∆s

0 must vanish. As the non-
vanishing of ∆s

0 is a pre-condition for SC, this implies a
critical doping for SC at T = 0. On the other hand, at
the qualitative level, due to the cancellation of δ between
m2

s and τ2, if τ ( i.e. the holon-pairs density) is suffi-
ciently large Eq. (68) does have a solution, because the
remaining | ln δ| is a decreasing function. Notice again
the crucial role of this logarithm, coming from the long-
range tail of spin-vortices.

At finite temperatures, we need to solve Eq. (64) nu-
merically. The crossover temperature at which in mean
field approximation ∆s

0 becomes non-vanishing is denoted
by Tps (not yet the SC Tc) and is related to the for-
mation of a finite density of RVB spinon pairs. From
Eq. (34) we see that to have solution for the gap equa-
tion we need τ = 〈hihj〉 ∼ ∆h

0 $= 0, consistently with
the physical mechanism proposed, hence Tph > Tps and
when the spinon RVB pairs are formed together with the
already formed holon pairs, producing a finite density of
preformed hole pairs. Due to the φ phase fluctuations,
however, although the modulus of the SC order param-
eter ∆c ∼ ∆s/∆h of (20) is non-vanishing, if the hole
pairs are not condensed one cannot interpret it as the hole
gap. The temperature dependence of ∆s is presented in
Fig. 5b. One can see that, although near Tps the behav-
ior is the typical square root of mean-field, at low T it is
definitely not BCS-like, never approaching a constant.

V. SUPERCONDUCTIVITY

Now we are ready to finally discuss the true SC tran-
sition.

A. Nernst crossover

In this subsection we first consider the physical effects
due to a finite density of hole pairs before their conden-
sation.

The gauged XY or Stueckelberg model of Eq. (57) is
well known to have in the lattice two phases (see Ref. 39
for a rigorous discussion, while Ref. 40 for a numeri-
cal analysis): Coulomb and Higgs. If the coefficient,
∼ |∆s

0|2 of the Anderson-Higgs mass term for a is suf-
ficiently small, the phase field φ fluctuates so strongly
that it does not produce a mass gap for aµ and 〈eiφ〉 = 0
in the Coulomb gauge (a gauge-fixing is necessary due
to the Elitzur theorem41). This is the Coulomb phase,
where a plasma of magnetic vortices-antivortices appears.
In the presence of a temperature gradient a perpendicu-
lar external magnetic field induces an unbalance between
vortices and antivortices, giving rise to a Nernst signal,
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FIG. 5: (Color online) (a) is the T − δ phase diagram of
the mean field gap equation of spinon for different values of
MF spinon pairing ∆s (gray lines) which could be compared
with different levels of the Nernst signal4,5; ∆s = 0 is Tps.
(The curves at high dopings are not quantitatively reliable as
they do not take into account the crossover to the “strange
metal”). The dashed line is Tph, the “upper PG crossover
temperature”. The dotted line is the crossover temperature
between the pseudogap and strange metal phases, T ∗. (b) is
the ∆s as a function of temperature for fixed dopings. The
temperature and ∆s are in units of J .

even if the hole-pairs are not condensed yet. Therefore
we conjecture that this phase of the model corresponds to
the region in the phase diagram of underdoped cuprates
characterized by a non-SC Nernst signal and a compari-
son between the experimental phase diagram in Refs. 4,5
and the one derived in our model, supports this idea. The
result is shown in Fig. 5, where the thick lines are equal-
∆s

0 lines. One expects that the level of ∆s
0 is roughly

proportional to the intensity of the Nernst signal and a
comparison of the figure with the experimental data4,5

shows a qualitative agreement for the δ − T dependence.
Note that the Nernst data are strongly supported by the
measured magnetic-field induced diamagnetic signal,42 as
well as by STM visualized pair formation43 and quasi-
particle fingerprint.44 The Tph line in the figure is the
upper pseudo-gap crossover temperature determined by
∆h

0 (kF ) of Eq. (34), hence it does not take into account
the transition to the SM phase, therefore can only be
taken as a qualitative trend. At extremely low doping
(δ ! 0.03) the lines are not reliable because the quenched

Figure 6.3: The numerical solution for the gap equation for spinons in eq.

6.15, for various doping values.

Finally we can identify the line corresponding to Tps at various dopings

in the T − δ phase diagram, by solving eq. 6.15 for the temperature at

various dopings, having imposed |∆s
0| = 0; the aforementioned line is the

one labelled with ∆s = 0.0 in fig. 6.4.

6.4 Superconductivity

The order parameter for superconductivity is to be written, in terms of ci,

c†i , i.e. electron annihilation/creation operators, as:
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Figure 6.4: Phase diagram, the line labelled with ∆s = 0.0 is the one which

marks Tps.

∆c
ij = 〈εαβciαcjβ〉

by consistently neglecting gauge fluctuations, in accordance with eq. 4.19

and eq. 4.20, it can be rewritten in terms of spinonic and holonic operators

as:

∆c
ij = 〈εαβziαzjβ〉〈H∗i H∗j 〉

so that in term of ∆h
0 , ∆s

0 and their respective phases, as defined when

discussing holon and spinon pairing, the order parameter for superconduc-

tivity is then defined as:

∆c ∼
∆s

∆h
=

∆s
0

∆h
0

ei(φ
h−φs)

For the onset of SC the condition 〈∆c〉 6= 0 must be fulfilled. Namely

a finite density of holons and spinons should be present in the system (i.e.
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〈∆s
0〉 6= 0 and 〈∆h

0〉 6= 0) but also the gauge-invariant electron phase φ =

φh − φs should condense, i.e. 〈eiφ〉 6= 0, not to destroy superconductivity.

Equivalently one may say that the superconductivity is achieved in three

steps:

• At first a finite density of incoherent holon pairs is formed at a temper-

ature Tph. As seen the attractive force allowing holon to pair is given

by spin vortices surrounding each holon site.

• A finite density of incoherent spinon pairs is formed at an intermedi-

ate temperature Tps. As seen, there is no “direct” attraction between

spinons; however as each of the two holons in a preformed holon pair

is able of attracting a spinon by means of the h/s gauge interaction,

this whole mechanism can be regarded in its entirety as an effective

attractive interaction between spinons, mediated by the Aµ gauge field

and a preformed holon pair. In this regime the superconductivity is

destroyed by a plasma of magnetic vortices-antivortices, described by

the gradient of the phase φ which is oscillating too strongly for su-

perconductivity to appear. It has been argued ([7]) that this regime

corresponds to the appearance of the Nerst signal7 above the SC dome.

We also note that Tps must be ≤ Tph because the whole treatment of

holon pairing assumes τ ≡
∣∣∣〈ĥiĥj〉∣∣∣ 6= 0; indeed, the gap equation has

no solution if τ = 0 so that there can be no spinon pairing in absence

of holon pairing.

• Finally at a temperature Tc the preformed holes became coherent, gen-

erating a d-wave hole condensate:

7The Nerst signal is observed as an electric field generated when a sample is subjected

to a temperature gradient and a magnetic field, perpendicular to each other. The electric

field generated as a response is perpendicular to both.
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〈
∑
α,β

εαβciαcjβ〉 6= 0

This transition corresponds to the condensation of the phase field, in

other words Tc is determined by the condition 〈eiφ〉 6= 0; the dynamics

of the φ field, as seen, are essentially those of a three-dimensional XY

model, so that it can be argued that the superconducting transition is

in the 3DXY universality class; this remarked will be explained more

thoroughly when discussing the behaviour of the superfluid density in

the vicinity of Tc. Below Tc the U(1) symmetry for the h/s gauge field

is broken to the Z2 discrete group, implying, due to the Anderson-

Higgs mechanism, that the gauge field Aµ should acquire mass. It has

been proved8 that the coherence for holon pairing is inconsistent with

a gapless Aµ field, so that Tc must be ≤ Tc.

• It is then now that the superconductivity is ultimately determined

by the 3DXY model in eq. 6.10, the superconducting transition being

determined by a finite |∆s
0| which we will denote as |∆s

0|c; i.e. the value
which separates the Higgs and Coulomb phases for the 3DXY model.

The exact value of this quantity will be calculated in subsection 7.2.2,

here we note that, referring to the phase diagram in fig. 6.4, for every

choice of |∆s
0|c the present theory is able to reproduce the dome-shaped

superconducting zone in the T − δ phase diagram.

8See Appendix C of [7]
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Superfluid density

As previously discussed in section 2.6 the superfluid density has two operative

definitions which yield the same result in the context of BCS theory, but do

not necessarily agree in the context of other theories for superconductivity.

Particularly, as in the framework of the present theory a finite incoherent

density of hole pairs is present at Tc ≤ T ≤ Tps, in this range of temperatures

we expect to have ρEMs = 0, as the gauge field is still ungapped, and ρFs 6= 0,

as the mechanical definition of superfluid density is oblivious of whether the

pairs are in a coherent or incoherent state.

The calculations for both ρEMs and ρFs will be now be carried out, as

the original contribution of the present thesis. We start by recalling that,

as shown in eq. 6.8, the effective action for the system, when also including

holon contribution, reads:

Sseff [a,∆s
0] = Ss,0eff [∆s

0] + Ss,2eff [a,∆s
0] + Sheff [a]

and that this action can be interpreted as a zeroth order expansion, i.e.

Ss,0eff , to which the gaussian fluctuations in the gauge fields have been added,

by means of Ss+h,2eff = Ss,2eff [a,∆s
0] + Sheff [a]. However Ss,0eff and Ss+h,2eff when

analyzed separately can regarded as describing two different theories, giving

two different contributions to the superfluid density each one on its own:

85
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• Ss,0eff is formally similar to the action a BCS-like theory1. However the

analogy cannot be extended as there are striking qualitative differences:

as opposed to the BCS case, this term alone does not provide attrac-

tive interaction due to the different statistics of the fields involved. In

this term one would expect to observe2 ρFs 6= 0, while the contribution

to ρEMs must be null for at least two reasons: in first place, by defini-

tion the phase field fluctuations are not included in this term, so that

no coefficient can be identified; also, as noted in [10], to be defined

ρEMs requires the existence of long-range topological order. Also this

is in full accordance with the fact, already analyzed, that Ss,0eff alone is

not enough to describe superconductivity, the gauge fluctuations being

essential in describing the symmetry breaking related to the SC tran-

sition: keeping this remark in mind it is natural assuming that in this

sector ρEMs should be zero.

• Ss,2eff effectively describes a three-dimensional gauged anisotropic XY

model, in which the time component can be treated effectively as a

spatial variable and the coefficient |∆
s
0|2

6πM can be regarded as the inverse

temperature, determining which phase the model is in. The coeffi-

cient is a monotonically decreasing function of temperature, as is the

inverse temperature, so that qualitatively the distinction between the

high-temperature phase and low-temperature phase of the model is pre-

served. As already noted, for numerical reasons in a three-dimensional

model ρEMs and ρFs are effectively the same quantity up to a part in 104,

so that the distinction between the two definitions can be neglected in

1Compare for instance our 2 × 2 matrix in eq. 7.4 with its corresponding fermionic

BCS analogue in [14]
2The physical meaning being that Ss,0eff describes a finite density of finite holons, pro-

vided that the gap equation is solved taking into account the gauge fluctuations so that

|∆s
0| can be 6= 0. If we restrict ourselves to a pure Ss,0eff theory clearly we will also observe

ρFs = 0, because, as already noted, the interaction between spinons is repulsive.



7.1. Calculation of ρs,0 87

this case.

Following the scheme just outlined, the calculation will be split in two

parts, separating the contribution to ρs coming from Ss,0eff from the one com-

ing from Ss+h,2eff . We will refer to these two contributions as ρs,0 and ρs,2,

keeping in mind that for the former is obtained by using the mechanical

definition for ρs, while on the other hand for the latter the two definitions

are in good agreement.

7.1 Calculation of ρs,0

Aim of this section will be calculating the contribution to the superfluid

density coming from Ss,0eff , which, as already noted can only contribute to

the “mechanically-defined” superfluid density. The basic idea behind this

calculation is that, as stated in eq. 2.13 the “mechanically-defined” super-

fluid density can be evaluated by calculating the second order free energy

difference when imposing a phase twist

∆c (x) −→ ∆′c (x) = ∆c (x) e−iQ·x (7.1)

to the SC order parameter. As seen, in our model the SC order parameter

is given by:

∆c =
∆s,0

∆h,0
eiφ (7.2)

and, in order to calculate ρs,0, we will be observing how the twist eq. 7.1

modifies the dispersion relation, the partition function and, at last, the free

energy for the system, from which the superfluid density can be calculated.

7.1.1 The dispersion relation for spinons

Preliminarily we recall that the dispersion relation for the system can be

conveniently found starting from the Lagrangian for spinons in the Nambu
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spinor representation:

L = z̃†(x)Γs(x)z̃(x) (7.3)

after having opportunely defined a bosonic gauge-neutral Nambu-Gor’kov

doublet:

z̃ =

z̃1

z̃1

 =

 z1e
iφ/2

z2e
−iφ/2


with Γs as defined in 6.5, which in matrix form reads:

Γs =

(∂µ − i
(
aµ + 1

2∂µφ
))2

+m2
s −2∆µ∂

µ

2∆∗µ∂
µ

(
∂µ + i

(
aµ + 1

2∂µφ
))2

+m2
s

 (7.4)

For the sake of simplicity of notation only throughout the present section

we will often drop some unnecessary indices on the spinon order parameter,

by defining ∆µ ≡ ∆s
µ,0. By neglecting the gauge and phase fields and taking

the determinant of Γs in momentum space the two-branch dispersion rela-

tion for spinons is found to be E± (k) =
√
k2 +m2

s ± 2 |∆s
0| |k|, assuming

rotational invariance for the system.

Now, in order to be able to evaluate the free energy when imposing the

aforementioned twist to the order parameter, we are interesting evaluate how

the dispersion relation changes upon the same twist, i.e. carrying out the

same calculation as above after having modified the order parameter. More

specifically, when deriving the dispersion relation after imposing the twist

∆ (x) −→ ∆′ (x) = ∆ (x) e−iQ·x

for an infinitesimal Q on the order parameter of the SC ∆c =
∆s

0

∆h
0
eiφ it

is convenient to include the actual twist in ∆s
0, so that it is no longer a real

number, gaining an infinitesimal imaginary component.



7.1. Calculation of ρs,0 89

The twist then modifies the 2 × 2 Γs matrix in eq. 6.5 in the following

way:3:

Γs −→ Γ′s =

(∂µ − i
(
aµ + 1

2∂µφ
))2

+m2
s −2e−iQ·x∆µ∂

µ

2eiQ·x∆∗µ∂
µ

(
∂µ + i

(
aµ + 1

2∂µφ
))2

+m2
s


It is worth emphasizing, as the notation can be a little misleading at

first, that the phase φ = φh − φs is left unchanged by this treatment, the

only quantity changed being ∆s
0. As a consequence the fields aµ and φ are

also unchanged.

In order to understand the physics this new Γ′s matrix describes, it is

convenient doing a pseudo-unitary transformation. Normally such a trans-

formation in a fermionic BCS-like theory would be a unitary transformation.

In the present case, however, a pseudo-unitary transformation is needed (i.e.

a transformation U such that U †σ3U = σ3) because the fields are bosonic,

as noted in [14], § 2.2 and in [35]. Nonetheless the transformation used,

being diagonal, is both unitary and pseudo-unitary. The basic idea behind

this transformation is removing the additional phase that the twist adds to

the off-diagonal terms, at the expense of making the on-diagonal terms more

complicated. It is worth noting that such a transformation leaves the physics

of the system unchanged, as S ∼ ln det (Γs) = ln det
(
U−1ΓsU

)4. One can

then choose the following transformation:

U =

e−iQ·x
2 0

0 e+iQ·x
2

 (7.5)

after which the Γs becomes:

3Generally in the present and in the following section the prime will be used to indicate

the quantities after the twist.
4This is not completely true, as the UV cutoff forces us to make some additional

considerations, see subsection 7.1.3.
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U−1Γ′sU =

e+iQ·x
2 Γ′s11e

−iQ·x
2 e+iQ·x

2 Γ′s12e
+iQ·x

2

e−iQ·x
2 Γ′s21e

−iQ·x
2 e−iQ·x

2 Γ′s22e
+iQ·x

2


and letting the differential operators act on the phase factors5:

U−1Γ′sU =

(∂µ − ξµ − i
Qµ
2

)2
+m2

s −2∆µ

(
∂µ − i

Qµ
2

)
2∆∗µ

(
∂µ + i

Qµ
2

) (
∂µ + ξµ + i

Qµ
2

)2
+m2

s


As already done while deriving the dispersion relation in the standard

case, we set the gauge and phase fields to zero, and then we calculate the

determinant of Γs in momentum space:

0 =

∣∣∣∣∣∣
(
∂µ − i

Qµ
2

)2
+m2

s −2∆µ

(
∂µ + i

Qµ
2

)
2∆∗µ

(
∂µ − i

Qµ
2

) (
∂µ + i

Qµ
2

)2
+m2

s

∣∣∣∣∣∣ −→
Fourier−→

(
−ω2 + |k|2 +m2

s +
|Q|2

4

)2

−(k ·Q)2−4
∑
i,j=1,2

∆∗i∆j

(
k +

Q

2

)
i

(
k− Q

2

)
j

= 0

We rewrite the sum in a more convenient way, using
∑

i,j =
∑

i=j +
∑

i 6=j

and the rotational invariance of ∆i, which implies ∆i∆
∗
j +∆∗i∆j = 2δij |∆i|2:

∑
i,j=1,2

∆∗i∆j

(
k +

Q

2

)
i

(
k− Q

2

)
j

=

=
∑
i=j

∆∗i∆j

(
k +

Q

2

)
i

(
k− Q

2

)
j

+
∑
i 6=j

∆∗i∆j

(
k +

Q

2

)
i

(
k− Q

2

)
j

=

= |∆s
0|2
∑
i=1,2

(
k2
i −

Q2
i

4

)
+
∑
i 6=j

∆∗i∆j

(
kikj −

QiQj
4

)
+
∑
i 6=j

∆∗i∆j
1

2
(kjQi − kiQj) =

= |∆s
0|2
(
|k|2 − |Q|

2

4

)
+

1

2

∑
i 6=j

∆∗i∆j |k| |Q| sin (θ) (−1)j =

5We defined: Qµ ≡ (0,Q)
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= |∆s
0|2
(
|k|2 − |Q|

2

4

)
+

1

2
|k| |Q| (∆∗1∆2 sin (θ) + ∆∗2∆1 sin (−θ)) =

= |∆s
0|2
(
|k|2 − |Q|

2

4

)
+

1

2
|k| |Q| sin (θ) (∆∗1∆2 −∆∗2∆1)

Having introduced θ defined as the angle between Q and k. Arbitrarily

choosing the direction of Q this angle can also be regarded as the variable θ

over which one integrates after the sums are converted to integrals, and the

integrals are, in turn, converted in polar coordinates. One can now write the

dispersion relation in implicit form:

0 =

(
−ω2 + |k|2 +m2

s +
|Q|2

4

)2

− |k|2 |Q|2 cos2 (θ)− 4 |∆s
0|2
(
|k|2 − |Q|

2

4

)
+

− 2 sin (θ) |k| |Q| (∆∗1∆2 −∆∗2∆1)

which then yields:


E′± (k) =

√
m2
s + |k|2 + |Q|2

4 ± J

J =

√
4 |∆s

0|2
(
|k|2 − |Q|

2

4

)
+ |k|2 |Q|2 cos2 (θ) + 2 sin (θ) |k| |Q| (∆1∆∗2 −∆2∆∗1)

As expected the relation just found coincides with the unperturbed case

when setting Q = 0 and we also note that, writing down the Taylor-series

expansion for E′± (k) using |Q| as the expansion parameter one can formally

write the result of this section as:

E′± (k) = E± (k) + |Q| f± (k) +
|Q|2

2
g± (k) +O

(
|Q|3

)
for an opportune choice of the functions f± and g±; grouping in one single

term all the corrections due to the twist to the original dispersion relations,

at all orders, we obtain a formal expression which will be frequently used in

what follows:
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E′± = E± + ∆E± (7.6)

7.1.2 Free energy and ρ0

Now we need to re-derive the partition function function for the system, to

evaluate how it is changed by the infinitesimal twist to the order parameter.

The partition function for the unperturbed system, keeping into account the

spin multiplicity, is to be written as:

Z = Z
(2s+1)
0 Z0 =

∑
k

e−β(E+(k)+E−(k))

where s denotes the spin. On the other hand, after having imposed the

twist, the new partition function can be symbolically written as follows:

Z ′ = Z
′(2s+1)
0 Z ′0 =

∑
k

e−β(E+(k)+E−(k)+∆E++∆E−)

One can put in evidence the infinitesimal contribution, and then write

the Taylor series expansion to the first order in ∆E±:

Z ′0 =
∑
k

e−β(E+(k)+E−(k)) · e−β(∆E++∆E−) =

=
∑
k

e−β(E+(k)+E−(k))·(1− β (∆E+ + ∆E−)) = Z0+Z0〈−β (∆E+ + ∆E−)〉

where 〈#〉 denotes the ensemble average. Remembering that ρs ∝ ∆F

we are interested in calculating the free energy variation:

∆F = − 1

β

(
ln
(
Z ′
)
− ln (Z)

)
= −(2s+ 1)

β
ln

(
Z0 + Z0〈−β (∆E+ + ∆E−)〉

Z0

)
=

= − 2

β
ln (1 + 〈−β (∆E+ + ∆E−)〉) ≈ − 2

β
〈−β (∆E+ + ∆E−)〉 = 2〈∆E++∆E−〉
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=⇒ ∆F = 2〈∆E+ + ∆E−〉

The complete expression for the superfluid density, as seen in eq. 2.13,

is:

∆F = F (Q)− F (Q = 0) =
1

2
ρmv2

s

and by noting that vs = Q
2m ⇒ |vs|

2 = |Q|2
4m2 , it follows that:

∆F =
1

2
ρsm
|Q|2
4m2

= ρs
|Q|2
8m

Solving for ρs the final expression for the superfluid density is readily

obtained as:

ρs,0 =
8m

|Q|2
∆F =

16m

|Q|2
〈∆E+ + ∆E−〉

and can be evaluated as soon as one is able to calculate 〈∆E+ + ∆E−〉;
in order to accomplish this goal one needs to solve a couple of issues, which

remained hidden so far and will be discussed in detail in the following section.

7.1.3 Calculation of 〈∆E+ + ∆E−〉

The two issues briefly mentioned in the previous subsection are the following

ones:

• The two quantities ∆E+ and ∆E−, as defined in eq. 7.6, are divergent

for small momenta when taken singularly. Their sum, however, does

converge as one may expect. So ∆E++∆E− of which we want to calcu-

late the ensemble average is not to be calculated naively as the sum of

the two contributions, from the two branches of the spinon dispersion

relation, but it is better calculated after some algebraic manipulation.
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• As previously noted, when imposing the twist on the 2×2 matrix Γ we

changed the dynamics of the spinons inducing a shift in the speed of

all spinons. This effect has yet to be more thoroughly analyzed, and,

eventually, to be kept into account; that is the case, as already briefly

mentioned, when working on a lattice using an UV cutoff.

To solve the first issue one can conveniently think of ∆E+ + ∆E− as

∆ (E+ + E−), doing the calculation in the following way:



E′Σ = E′+ + E′− =
√
E′2+ + E′2− + 2E′+E

′
− =

=

√
2 ·
(
m2
s + |k|2 + |Q|2

2

)
+ 2

√(
m2
s + |k|2 + |Q|2

2

)2
− J2

J2 = 4 |∆s
0|2
(
|k|2 − |Q|

2

4

)
+ |k|2 |Q|2 cos2 (θ) + 2 sin (θ) |k| |Q| (∆1∆∗2 −∆2∆∗1)

having defined EΣ ≡ E+ + E− and consistently using the prime for the

“twisted” versions of original quantities. It follows that:

E′Σ = (E+ + E−) + |Q| ∂E
′
Σ

∂ |Q|

∣∣∣∣
|Q|=0︸ ︷︷ ︸

E1

+
|Q|2
2!

∂2E′Σ
∂ |Q|2

∣∣∣∣
|Q|=0︸ ︷︷ ︸

E2︸ ︷︷ ︸
∆EΣ≡∆E++∆E−

+O
(
|Q|3

)

and the expansion is no longer divergent at any order. It is now easily

argued that E1 is going to contain only terms ∝ sin (θ) which are not going

to give any contribution once we calculate the ensemble average:

E1 = |Q| ∂E
′
Σ

∂ |Q|

∣∣∣∣
|Q|=0

= |Q| |k| sin (θ) (∆∗1∆2 −∆1∆∗2)

(E+ + E−) (E+ · E−)
=⇒ 〈E1〉 = 0

The calculation for the second order term E2 is very lengthy and has

been carried out with Wolfram Mathematica R©:
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E2 = |Q|2

2!
∂2E′Σ
∂|Q|2

∣∣∣
|Q|=0

= |Q|2
2 (E+ + E−)

[
1
2
−A+B

(E++E−)2 −
|k|2 sin2(θ)(∆1∆∗2−∆∗1∆2)

2

(E++E−)2(E+·E−)2

]
A =

|k|2 sin2(θ)(∆1∆∗2−∆∗1∆2)
2

(E+·E−)3

B = m2
s+2|∆|2

2(E+·E−)

The ensemble average for the above expression for E2 will be calculated

numerically and will then be used for plotting ρs,0, as ρs,0 ∝ 〈∆E++∆E−〉 =

〈∆EΣ〉 = 〈E2〉.
The second issue mentioned above arises because of the transformation

in eq. 7.5 does not let the physics of the system untouched. In order to

understand how the physics are changed it is useful to visualize the area

of the momentum space in which one sums when evaluating the partition

function Z: how does Z change when adding a constant offset to all speed

of all particles? In absence of any UV cutoff it is clear that:

∑
k,k∈R2

=
∑

k+Q,k∈R2

for any constant two-dimensional vector k. On the other hand one cannot

say the same when using an UV cutoff, because:

∑
k,k∈R2,|k|≤Λ

6=
∑

k+Q,k∈R2,|k|≤Λ

as in the l.h.s. the sum is calculated over the area of a circle of radius

Λ centered on the origin, while in the r.h.s. the sum runs over an identical

circle, but centered in −Q; going more into detail the effects are easily seen

to be of order |Q|2 when |Q| � 1 and cannot then be neglected as far as the

current calculation is concerned.

This issue is solved by removing “by hand” from the free energy a contri-

bution which will take into account the extra speed acquired by the spinons.

By calling ∆F twist+boost the quantity already calculated it is clear that we
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need to subtract from this quantity a term which account for the shift of

the integration domain in momentum space, we will refer to this term as

∆F boost, so that, in formulas:

ρs ∝ ∆F twist = ∆F twist+boost −∆F boost

The whole calculation for ∆F boost will not be reported here, as it follows

the very same steps used in calculating E1 and E2; briefly one needs to

evaluate differences in the dispersion relation when the speed of the spinons

is shifted as k −→ k+ Q
2 ; this is easily done by Taylor-expanding as follows:

E±

(
k +

Q

2

)
= E± (k) + |Q| l± (k) +

|Q|2
2!

m± (k) + · · ·

for an adequate choice of the l± and m± functions; consistently with the

previous case when taking the ensemble average there is no contribution at

the first order.

7.1.4 Final results for ρs,0

The contribution to the superfluid density from Ss,0eff can then be calculated

numerically using the procedure explained in the previous subsection, the

final result can be observed in fig. 7.1; as already explained the most impor-

tant feature of this contribution is that it goes to zero only when T ≥ Tps,

so that there is a non-negligible superfluid density even in the Tc ≤ T ≤ Tps
interval.
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Figure 7.1: The contribution to (mechanically-defined) superfluid density

coming from Ss,0eff . Both in the x and the y axis arbitrary units are used, the

doping has been set to δ = 0.14, as a consequence Tps ≈ 0.27.
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7.2 Calculation of ρs,2

For the calculation of the gauge fluctuations contribution to superfluid den-

sity, which will turn out to play an essential essential role like they do for

pairing, our starting point will be the partition function for the gauge con-

tribution to the model, as defined in section 6.3; however in section 6.3 we

were interested in calculating the partition function only in order to derive

the gap equation, so that the phase φs could be self-consistently neglected,

as also discussed in [7] and in [36]. On the other hand we now want to

calculate the partition function to obtain the free energy and ultimately the

superfluid density, so that we are no longer allowed to neglect the phase: the

partition function has then to be written as derived in eq. 6.10, using the

gauge invariant fields aµ and φ, as:

Zg =

∫
DaµDφe−

∫
d3xLg [aµ,φ] (7.7)

Lg =
1

6πM

{
[∂µaν − ∂νaµ]2 + |∆s

0|2 ηµν
(
aµ −

1

2
∂µφ

)(
aν −

1

2
∂νφ

)}
(7.8)

where Lg is the (Euclidean) Lagrangian for the system, and ηµν denotes

the anistropic metric tensor, ηµν ≡ diag (2, 1, 1).

We note that the model described by the partition function and the

Lagrangian in equations 7.7 and 7.8 are quite similar to the model derived

in section 6.3 in which we neglected the phase. More specifically we still

find a three-dimensional anisotropic gauged XY model, the only difference

being that the relevant variable is now φ, instead of φh; moreover, as we will

shortly see, an effective theory can be derived with a 3D XY model with φs

as the angular variable.

As noted in [7] when writing down the partition function starting from the

Lagrangian above one must be careful to separate physical and non-physical
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degrees of freedom; namely one must take into account that, although aµ and

φ are gauge invariant objects, nonetheless the U(1) h/s gauge symmetry has

not been fixed yet, so that the naive path integral Z =
∫
DaµDφe−S[aµ,φ]

will integrate over gauge-equivalent configurations and, ultimately, diverge.

Referring again to to [7] and citations therein, particularly [37], the right

procedure to derive the partition function consists in reinstating the original

non-gauge invariant fields, i.e. the phases φh, φs and the Aµ field, by means

of the relations:


aµ ≡ Aµ − 1

2∂µφ
h

φ = φh − φs

obtaining the following Lagrangian

Lg =
1

6πM

{
[∂µAν − ∂νAµ]2 − 2∂µAν [∂µ, ∂ν ]φh+

+
1

4

(
[∂µ, ∂ν ]φh

)2
+ |∆s

0|2 ηµν
(
Aµ −

1

2
∂µφ

s

)(
Aν −

1

2
∂νφ

s

)} (7.9)

We now note that the term 2∂µAν [∂µ, ∂ν ]φh can be neglected in a low-

energy approximation being of order three in the derivatives, while the other

terms appearing in Lg are of order two at most. As a side effect of this

approximation the dynamics of the holon phase is now completely decoupled

from the other fields, while the spinon phase and the Aµ gauge field are

coupled by only one term which can be eliminated by an adequate choice of

the gauge fixing. We can now write the Lagrangian as:

Lg =
1

6πM

{
[∂µAν − ∂νAµ]2 +

1

4

(
[∂µ, ∂ν ]φh

)2

+ |∆s
0|2 ηµν

(
Aµ −

1

2
∂µφ

s

)(
Aν −

1

2
∂νφ

s

)} (7.10)

which can in turn be rewritten in the following way:

Lg = AµK
µνAν +

|∆s
0|

24πM
ηµν∂µφ

s∂νφ
s − |∆

s
0|2

6πM
ηµνAµ∂νφ

s +H
(
φh
)

(7.11)
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Kµν =
1

3πM

[
∂µ∂ν − ∂2gµν +

|∆s
0|2
2

ηµν

]
=

1

3πM

[
∂µ∂ν − ∂2gµν +mµν

]
(7.12)

emphasizing the fact that the gauge field Aµ describes a theory which is

akin to that of a massive boson, while on the other hand we find that the

dynamics of the spinon phase are those of a three dimensional anisotropic

XY model. The XY model can be deemed as ungauged, as opposed to

the model we started from at beginning of the present section, as long as

it is understood that the term ∼ ηµνAµ∂νφ
s will be treated separately, i.e.

eliminated by an appropriate gauge choice. The dynamics of the holon phase

are included in H
(
φh
)
and will be integrated out because, as it will be clear

shortly, they do not play any specific role in how we decided to evaluate ρs.

Also in eq. 7.12 the tensor mµν has been straightforwardly defined; here

we note that it can be seen as a “pseudo-mass” tensor and that if it were

diagonal it would be a fully fledged mass for the Aµ gauge field.

In order to give a complete treatment we should now include the holon

contribution to the partition function, this aim could be achieved as seen in

section 6.3 by redefining the matrix mµν as follows:


|∆s

0|2 0 0

0 1
2 |∆s

0|2 0

0 0 1
2 |∆s

0|2

 −→

|∆s

0|2 + c̃2 0 0

0 1
2 |∆s

0|2 + f (k) 0

0 0 1
2 |∆s

0|2 + f (k)


(7.13)

with c̃2 = 3πMc2 and f (k) = 3πMc1

√
v2
Fk

2
+ + v2

∆k
2
−. However it can be

shown that this contribution is subleading with respect to the other terms

appearing in the Lagrangian and can be consistently neglected as far as the

current treatment is concerned. In order to show that we need to exploit

three facts:

• Firstly we need to recall that M is defined as M ≡
√
m2
s − 2 |∆s

0|2.
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• Secondly, we also recall that, as thoroughly discussed in the introduc-

tory section of this chapter, ρs,2 can only be non-zero below the critical

temperature and that |∆s
0|2 is a monotonically decreasing function of

temperature.

• Lastly, we anticipate that, as it will be shown in subsection 7.2.2, for

T ∼ Tc one sees that |∆s
0|2c ≈

m2
s

2 +O
(

m4
s

576π2T 2
c

)
.

Hence it is now straightforward to exclude the holon contributions by

noting that the Lagrangian terms coming from the holon contribution all

have a prefactor 3πM with respect to the other terms, which in the range

0 < T ≤ Tc roughly evaluates to:

3πM = 3π

√
m2 − 2 |∆s

0|2 ≈ 3π

√
m2
s −m2

s +O

(
m4
s

576π2T 2
c

)
≈ O

(
m2
s

8Tc

)
which is numerically small and, for typical values of ms and Tc will be

at least two orders of magnitude smaller than the other terms.

Referring to the theory described by eq. 7.11 and 7.12 where the gauge-

invariance is left explicit, we now note that it can be fixed by using the

Faddeev-Popov procedure by integrating only over the configurations which

satisfy a functional constraint expressed choosing a gauge fixing function F :

Zg = N
∫
DAµDφs

∣∣∣∣δFδΛ
∣∣∣∣ e− ∫ d3xLg (7.14)

The gauge fixing function will be chosen conveniently at a later time, it is

implied that starting from eq. 7.14 the Lagrangian does not contain the φh

field any longer, as it has been integrated out and its contribution is included

in the multiplicative constant N ; nonetheless we will continue to refer to this

new Lagrangian as Lg. As our final aim is to evaluate the differences in the

action (and ultimately in the free energy) when a twist ∆c −→ ∆cei ~Q·~x is

applied to the superconductivity order parameter, we put into practice the

twist as
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φs −→ φs −Qµxµ (7.15)

having defined Qµ ≡
(

0, ~Q
)
. It is to be noted that, in a completely

equivalent way, one could have expressed the theory in terms of φh imple-

menting the twist as φh −→ φh +Qµx
µ, the gauge invariance ensuring that

the procedure must not have any effect on the superfluid density, which is

a physical observable; in that case, however, one could not have integrated

out the φh variable as done in the present treatment. After the twist just

discussed the theory described by eq. 7.14 changes as follows:

Lg −→ Lg + ∆Lg

∆Lg =
|∆s

0|2
6πM

(
−ηµνAµQν +

1

2
ηµνQµ∂νφ

s +
1

4
ηµνQµQν

)
(7.16)

It is easily seen in eq. 7.16 that the net effects of the twist are, in the

approximation just described:

∆Lgauge = −|∆
s
0|2

6πM
ηµνQνAµ = JµAµ

∆LXY =
1

24πM

(
|∆s

0|2 ηµνQµQν + 2 |∆s
0|2 ηµνQµ∂νφs

)
i.e. a current JµAµ coupled to the Aµ field and the contribution to the

superfluid density of a anisotropic XY model, where the imaginary time

has been promoted to the role of a fully-fledged spatial dimension and the

“coupling constant” |∆
s
0|2

24πM plays the role of the inverse temperature. One

can convince themselves of this fact by writing down the Lagrangian for an

anisotropic three-dimensional XY model (from now on A3DXY), which in

its continuum version reads6:
6The A3DXY model will be analyzed more thoroughly in subsection 7.2.2
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L = Jηµν∂µφ
s∂νφ

s

and by observing that ∆Lxy is actually (up to a global multiplicative

constant) how the action varies upon the twist in eq. 7.15, or equivalently by

noting that ∆LXY corresponds to whole variation when the Aµ field is set to

zero. We postpone the discussion of this term to section 7.2.2, noting that it

has been thoroughly analyzed in scientific literature (e.g. [38] and [39]), and

that while there is no known closed-form expression for the superfluid density

of that model, it is quite easily calculated with Montecarlo techniques.

We now focus on the other contributions, wanting to show that they

are null or negligible, so that as far as the superfluid density is concerned

the superfluid density density will turn out to be essentially XY-like. As

already noted ∆Lgauge can be thought of as a contribution given by a Jµ =

(6πM)−1 |∆s
0|2Qµ current coupled to the Aµ gauge field. Briefly switching

to the hamiltonian formalism we can note that this term gives a negative

contribution to the free energy by means of Bogoliubov inequality:

H = H0 + JµA
µ =⇒ F ≤ F0 + Jµ〈Aµ〉0 = F0

denoting with H0 the hamiltonian for the system in the standard case,

and with F0 and F the free energy calculated, respectively, from H0 and

from H; 〈#〉0 is the ensemble average defined by H0.

Moreover, by readapting the calculations in [40], particularly the con-

vexity lemma used in the demonstration for Bogoliubov inequality, formally

exchanging the roles played by λ and each component of Q one can demon-

strate that:

ρs ∝
d2F

dQ2
i

≤ 0

for i = 1, 2 so that the contribution to superfluid density arising from

JµA
µ is also negative. We search then for a lower bound to keep this term
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close to zero; in order to do so it is convenient go back to the path-integral

formalism as in eq. 7.14; we can now conveniently choose the gauge-fixing

function F so that the Aµ and φs fields are decoupled and the A3DXY model

is almost completely retained in the procedure:

F = α ·mµν (∂µAν)φs − 1

2α
φs − ω (x) (7.17)

for an arbitrary real constant α. With this gauge fixing choice, after

having completed the Faddev-Popov procedure the partition function reads:


Z =

∫
DAµDφse−S[Aµ]−S[φs]

S[Aµ] = 1
3πM

∫
d3x Aµ

(
−∂2gµν + ∂µ∂ν +mµν − α2mµµ′mνν′∂µ′∂ν′

)
Aν

S[φs] = 1
12πM

∫
d3xφs

(
−|∆

s
0|2
2 ηµν∂µ∂ν + 1

2α2

)
φs

We note that as a result of the Faddeev-Popov procedure two new terms

are introduced in the action, a gauge breaking term in the Aµ sector and a

spurious mass term in the phase sector. In order to eliminate the mass term

for the phase field, which is clearly an artifact of the gauge fixing, one must

take the limit α −→ ∞: this choice is commonly referred to as the Landau

gauge; however in scientific literature it is more customary to use a gauge

parameter ξ ∝ 1
α , so that the Landau gauge is defined by ξ = 0. It is also

worth emphasizing that the Landau gauge is the only allowed gauge choice,

because, in case φs should not be a gaussian variable, a term ∼ mφ2
s would

not even be defined. The gauge choice does not affect theAµ sector, as we will

demonstrate shortly that α2mµµ′mνν′∂µ′∂ν′ gives a negligible contribution,

and effectively eliminates the mass term; the action S [φs] is now, up to 4-

divergences in the integrand, the one of an anisotropic three-dimensional XY

model.

As the two fields Aµ and φs are now decoupled, so that Z = ZAµZφs , it

is also clear that they are going to contribute separately to free energy, as
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F = FAµ+Fφs ; we now focus on FAµ . We can formally carry out the gaussian

integral, integrating away the current, recalling that we are not interested

in an analytical closed form for ZAµ , as we would rather study how the

additional term ∆Lgauge in the Lagrangian modifies ZAµ with respect to

Z0 ≡ ZAµ |∆Lgauge=0. The partition function is then given by:

ZAµ =

∫
DAµ exp

[∫
d3x

(
−1

2
AµL

µνAν − JµAµ
)]

having defined:

Lµν =
2

3πM

(
−∂2gµν + ∂µ∂ν +mµν − α2mµµ′mνν′∂µ′∂ν′

)
and the gaussian integral yields as a result:

ZAµ = Z0 exp

[∫
d3xd3yJµ (x)

(
L−1

)µν
(x− y) Jν (y)

]
Due to the system being isotropic as far as the spatial directions are

concerned, it is easily seen that the superfluid density cannot depend on the

direction of Q: we are then free to choose Jµ =
(

0, (6πM)−1 |∆s
0|2 |Q| , 0

)
;

this is fully equivalent to adopting a frame of reference where the current

Jµ has the aforementioned form, and that frame of reference can always be

reached by spatial rotations. It follows that:

ZAµ
Z0

= exp

∫
d3xd3yJ1 (x)

(
L−1

)11
(x− y) J1 (y) =

= exp

[
|∆s

0|4

(6πM)2 |Q|
2
∫

d3xd3y
(
L−1

)11
(x− y)

] (7.18)

In order to demonstrate that the gauge field contribution is indeed neg-

ligible we must show that ∆F = −β−1 ln
(
ZAµ
Z0

)
∼ 0, the contribution from

the Jµ current to the superfluid density being proportional to ∆F . To be able

to do so one must note that in eq. 7.18 only the (1, 1) component of the Lµν

matrix appears, so that we can switch to momentum space representation

where the Lµν has the following form:
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Lµν =
2

3πM

(
p2gµν − pµpν +mµν + α2mµµ′mνν′pµ′pν′

)
and then calculate the component we need as

(
L−1

)1,1
= 1

det(L)

∣∣∣∣∣∣L
0,0 L0,2

L2,0 L2,2

∣∣∣∣∣∣.
The calculation is quite lengthy and cumbersome and has been carried out

with the aid of Wolfram Mathematica R©; before analyzing the results of this

calculation is worth discussing the analogous result in a simpler similar the-

ory, i.e. a massive vector boson with mass µ. Such a theory, in its gauge-fixed

version, leaving the gauge parameter ξ explicit, is described by a Lagrangian

of the form L ∼ AµCµνAν with

Cµν = k2gµν −
(

1− 1

ξ

)
kµkν + µ2gµν

and the associated propagator in momentum space for the Aµ field is (see

for instance [41]):

(
C−1

)µν
=

1

k2 + µ2

(
gµν − (1− ξ) kµkν

k2 + ξµ2

)
(7.19)

It is worth noting that when calculating an integral such the one in

eq. 7.18 the expression in eq. 7.19 can be simplified, neglecting the term

(1− ξ) kµkν

k2+ξµ2 , as it will work on conserved currents for which the condition

kµJ
µ = 0 holds. Going back to the case relevant for the present thesis, the

aforementioned computer calculation for
(
L−1

)1,1 yields7:

(
L−1

)1,1
=

µ2 + p2
1 + p2

2

(µ2 + p2)
(
µ2 + p2

1

)+
p2

1p
2
2

µ2 (2µ2 + 2p2)
(
µ2 + p2

1

)− α2p2
2

µ2 (µ2 + 2α2p2)

having defined8 µ ≡ |∆
s
0|2
2 . As already discussed the only suitable gauge

choice is the Landau gauge, i.e. α → ∞; when taking this limit
(
L−1

)1,1
7A global 3πM

2
factor has been omitted for clarity’s sake, in will be reinstated when

needed.
8So that we can rewrite the pseudo-mass matrix as: mµν = diag (2µ, µ, µ)
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becomes:

lim
α→∞

(
L−1

)1,1
=

µ2 + p2
1 + p2

2

(µ2 + p2)
(
µ2 + p2

1

) +
p2

1p
2
2

µ2 (2µ2 + 2p2)
(
µ2 + p2

1

) − p2
2

2µ2p2

Analogously to the previous case we can simplify the expression above

by noting that it will work on currents for which the condition kµJ
µ =

0 (no summation) applies; this condition is stronger than being a conserved

current, and allows us to neglect the second and the third terms on the right

hand side. After some algebraic manipulation we are left with9:

(
L−1

)1,1
=

1

µ2 + p2
− p2

2

2µ2p2

We postpone to appendix A the demonstration that the second term in

the r.h.s. of the equation above gives no contribution. As a consequence, as

far as the present calculation is concerned, our theory is formally equivalent

to the one described by Cµν : in conclusion the integral to calculate is:

ZAµ
Z0

= exp (W [J ]) W [J ] =
3πM

2

∫
d3x

∫
d3yJ1(x) C−1

∣∣11

ξ=1
(x−y)J1(y)

(7.20)

which can be evaluated as follows10:

W [J ] =
3πM

2

∫
d3x

∫
d3yJ1 (x)

[∫
d3k

(2π)3

eik(x−y)g11

k2 + µ2

]
J1 (y) =

=
3πM

2

∫
dx0dy0

∫
d2xd2yJ1 (x)

[∫
d3k

(2π)3 e
ik0(x0−y0) e

ik(x−y)

k2 + µ2

]
J1 (y) = · · ·

The integration over y0 gives 2πδ (k0) which in turn can be used to carry

out the integration out k0:
9The Landau gauge choice is now intended.
10Working in (2+1) dimension we use the standard italic notation for a 3-vector, writing

spatial-only 2-vectors in bold.
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· · · = 3πM

2

∫
dx0

∫
d2xd2yJ1 (x)

[
d2k

(2π)2

eik(x−y)

|k|2 + µ2

]
J1 (y) = · · ·

Taking out of the integral sign the currents, which as seen are constant

and uniform, rewriting them at the same time into their explicit form, we

finally find W [J ] to be:

W [J ] =
|∆s

0|4
24πM

∫
dx0︸ ︷︷ ︸

=β

∫
d2xd2yVYukawa (x− y, µ)

with:

VYukawa (x, µ) =

∫
d2k

(2π)2

eik·x

|k|2 + µ2

so that

∆F = −β−1 ln

(
Z

Z0

)
= − |∆

s
0|4

24πM

∫
d2xd2yVYukawa (x− y, µ) (7.21)

is effectively, up to a multiplicative constant, the electromagnetic self-

interaction energy of a charged L×L square, L being the spatial dimension

of the system, in a two-dimensional theory of Electromagnetism in which

the photon has mass µ 6= 0. We now make the following two assumptions,

which will be demonstrated in detail respectively in subsection 7.2.1 and in

appendix B:

• As already noted ∆F ≤ 0; it will be demonstrated that when setting

µ = 0 one actually lowers ∆F , so that a lower bound for ∆F ′ =

∆F |µ=0 will also be a lower bound for ∆F .

• When setting µ = 0 reverts back to standard Electromagnetism in

two-dimensions, so that ∆F is to be calculated as follows:
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∆F = −L2 |∆s
0|4

24πM

∫
[0,1]4

d2xd2yVYukawa (x− y, µ = 0) = −L2 |∆s
0|4

24πM
I

the integral I just defined will be shown to evaluate to:

I = −−25 + 4π + 2 log (4)

12
≈ 0, 805 (7.22)

Now one can refer to the discussion of the contribution of the XY model

to superfluid density in subsection 7.2.2 to observe that the contribution to

superfluid density arising from the present section is proportional to 1
V ∆F ∝

|∆s
0|4. For typical values of ∆0

s it is at least two orders of magnitude lower

than the other contributions, so that it can be neglected in a very good

approximation.

7.2.1 Bounds on the non-XY contribution

We asserted without demonstration that when calculating the interaction

integral in eq. 7.21, the mass term can be neglected as it only lowers the

value of the integral, while we are searching for a suitable lower bound. Our

assertion can be written in formulas as an inequality between the Fourier

transforms defining two propagators for the Aµ gauge field:

∫
d2k

(2π)2

eik·x

|k|2
≥
∫

d2k

(2π)2

eik·x

|k|2 + µ2

In order to demonstrate this assertion we will follow the discussion in

[42], § 7. Adopting for clarity the notation used therein the assertion above

is tantamount to requiring:

C (m1;x− y) ≤ C (m2;x− y) when m1 ≥ m2 (7.23)

where C is the propagator for the Aµ field, defined by:
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C (m;x,y) = C (m;x− y) =

(
1

2π

) d
2
∫
e−ip(x−y) (|p

∣∣2 +m2
)−1

dp

(7.24)

where d is the (spatial) dimensionality of the system. Referring again

to [42] one can write down a closed-form expression for the free Euclidean

propagator, namely:

C (m;x− y) =

(
1

2π

)− d
2
(

m

|x− y|

) d−2
2

K d−2
2

(m |x− y|) (7.25)

where Ki is the modified Bessel function of second kind.

This expression is well-behaved in the massless limit, for which one cor-

rectly obtains Cγ ∼ − 1
2π ln (r) for d = 2 so that the inequality we want to

prove (in eq. 7.23) can also be proved directly by recalling the properties of

the Kν function. However one can also, alternatively, retrace11 the process

of dimensional regularization which leads from eq. 7.24 to eq. 7.25. The

propagator for Aµ as defined in eq. 7.24 is rewritten in an alternate form by

means of the following identity:

1

p2 +m2
=

∫ ∞
0

exp
[
−t
(
p2 +m2

)]
dt

so that:

C (m;x− y) =

(
1

2π

) d
2
∫ ∞

0
exp

(
−tm2

) ∫
e−ip(x−y)−tp2

ddpdt =

=

(
1

2π

) d
2
∫ ∞

0
exp

(
−tm2 − |x− y|2

4t

)∫
exp

(
−tq2

)
ddqdt =

=

∫ ∞
0

t−
d
2 exp

(
−tm2 − |x− y|2

4t

)
dt =

11The complete calculations can be found, for instance, in [43].
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=

(
1

2π

)− d
2
(

m

|x− y|

) d−2
2

K d−2
2

(m |x− y|)

By noting that one step before introducing the modified Bessel function

of second kind Kν the following inequality holds:

∫ ∞
0

t−
d
2 exp

(
−tm2

)︸ ︷︷ ︸
≤1

exp

(
−|x− y|2

4t

)
dt ≤

∫ ∞
0

t−
d
2 exp

(
−|x− y|2

4t

)
dt

the inequality in eq. 7.23 is readily demonstrated.

7.2.2 Analysis of the XY contribution and final results for

ρs,2

The final point of the above analysis is that in a very good approximation the

superfluid density for the system is determined by that of a three-dimensional

XY model, defined by the following Euclidean Lagrangian12:

LXY =
|∆s

0|2
24πM

ηµν∂µφ∂νφ (7.26)

with partition function Z =
∫
Dφe−

∫
d3xLXY , the 2π-periodicity for the

angular variable φ being understood. The model can be equivalently de-

scribed by switching to the hamiltonian formalism on a discrete lattice as

follows:

H = −J
∑
〈ij〉

cos (θi − θj) (isotropic case)

H = −Jz
∑
i

cos (θi − θi+ẑ)− Jxy
∑
i

∑
µ=x̂,ŷ

cos (θi − θi+µ) (z-anisotropic case)

for an opportune choice of the coupling constants Ji, this latter notation

being more customary in literature. It is important noting that, as clear
12We drop the s subscript for the phase in this section.
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from eq. 7.26, that the imaginary time component now plays the same role

as the two spatial components, and the analogue of inverse temperature is

defined by the coupling constant |∆
s
0|2

24πM . It is clearly seen that the behaviour

of the model is not altered from a qualitative point of view, because the

coupling constant is a monotonically decreasing function of temperature as

is β: we then have that the low-temperature and high-temperature phases

are not mixed or switched, however the transition between the two is now

determined by |∆s
0|2. We can give an estimate for the critical value |∆s

0|2c as

follows, by writing down the condition for which the system is at the critical

point:

(
|∆s

0|2c
24πM

)−1

= T 3DXY
c (7.27)

T c3DXY being the critical temperature for the A3DXY model; we ten-

tatively impose T c3DXY ≈ 2.2021 which is the critical temperature for the

isotropic case, and this choice will be justified by noting that |∆s
0|2c is sub-

stantially independent from the critical temperature. In order to show that

one can solve eq. 7.27 for |∆s
0|2, recalling that M =

√
m2
s − 2 |∆s

0|2 obtain-

ing:

(
24π

T 3DXY
c

)2 (
m2
s − 2 |∆s

0|2c
)

= |∆s
0|4c

the only physical (i.e. real and positive) solution being |∆s
0|2c ≈

m2
s

2 +

O
(

m4
s

576π2T 2
c

)
, so that at leading order the critical temperature does not con-

tribute to determining |∆s
0|2c . It is then convenient defining an effective

temperature Θ for the A3DXY model, which is only indirectly related to the

real temperature of the system by means of its defining relation Θ = 24πM

|∆s
0|2

;

a plot of the relation13 between the real temperature T and the effective

temperature Θ is given in fig. 7.2.

13Up to an irrelevant global constant.
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Figure 7.2: The relation between the real and effective temperature, in the

range [0, Tc], calculated for δ = 0.12; the qualitative behaviour is not altered

for different doping values.

In studying the superfluid density we are interested only in the region

for which ρs 6= 0, i.e. the region below the critical temperature; clearly

Θc = 24πM

|∆s
0|2c
≈ 2.2021 but the effective temperature is not allowed to go

to zero, its minimum value being: Θmin = 24πM

|∆s
0|2max

when T = 0 because,

as clearly seen from the plot of the numerical solution for the spinon gap

equation in fig. 6.3, |∆s
0|2 reaches its maximum value for T = 0.

The superfluid density will be then the one of a three-dimensional XY

model constrained in the temperature range [Θmin,Θc] as defined above.

Also the correspondence between the real temperature range [T = 0, Tc] and

the effective temperature range [Θmin,Θc] is not linear but has good enough

features to preserve two key features of the 3DXY model, namely:

• The map Θ (T ) is non-singular for T = Tc, so that the critical exponent
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for superfluid density is preserved.

• The map is also (slowly) linearly increasing for low temperatures, so

that, at least partially, the low-temperature linearity should be pre-

served as well.

As main result of the present thesis we can now calculate and plot the su-

perfluid density as a function of the temperature (fig. 7.3); all the quantities

related to the XY model have been calculated with a Montecarlo simulation

on a 20×20×20 lattice with periodic boundary conditions; a cluster update

strategy (the so-called Wolff algorithm, [44]) has been used in order to pre-

vent critical slowing. The other quantities (e.g. ρs,0) have been calculated

numerically or analytically when a closed-form expression was available.

In addition to that we note that the results of quantities calculated in

the present model could be affected by the MFA introduced in chapter 6,

especially for very low temperatures; the same phenomenon can be observed,

for instance, in [7] where the shape of the phase diagram for cuprates is re-

produced in a very reasonable agreement with experimental data, except for

an area below a certain temperature, where only a qualitative agreement can

be observed. For these reasons we give in fig. 7.4 another plot of superfluid

density where the very low-T behaviour has been linearly extrapolated from

higher temperatures, in the
[
0, Tc5

]
range. The physical soundness of the

procedure just described can also be verified by noting that the very small

slope observed in ρs (T ) is a consequence of the flatness of Θ(T ), which, in

turn, depends upon ∆s
0 (T ). The slope of ∆s

0 (T ) at very low temperatures

is not an essential feature of the model in [7] and is affected by the choice

of parameters; this reinforces our previous statement about the validity of

very low-T predictions of the present model, and further justifies the linear

extrapolation presented in fig. 7.4.



7.2. Calculation of ρs,2 115

Figure 7.3: The contribution to superfluid density coming from Ss,2eff . Both

in the x and the y axis arbitrary units are used, the doping has been set to

δ = 0.12.

Figure 7.4: The contribution to superfluid density coming from Ss,2eff , calcu-

lated with the same parameters as in in fig. 7.3; for temperatures below Tc
5

a linear extrapolation has been used. The dashed curve shows the “unmodi-

fied” superfluid density, as in fig. 7.3. Only the low-temperature region has

been plotted, i.e. the region where the two plots actually differ.
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7.3 Final results and comparison with experimental

data

We now compare our results with the experimental data, as reported in sec-

tion 2.7; as already noted in the introduction of the present chapter, we recall

that the contribution for Ss,0eff and Ss,2eff yield different contributions to super-

fluid density, respectively ρs,0 which contributes only to mechanically-defined

superfluid density and ρs,2 which contributes both to electromagnetically-

defined and mechanically-defined superfluid density. This dichotomy is a

peculiarity of the present model, and is not present in theories of conven-

tional superconductivity or in the majority of theories for high-temperature

superconductivity. As all the experiments known to the author at the time

of writing deal with ρEMs , we must compare ρs,2 with experimental data. We

then observe that:

• The critical exponent for superfluid density, defined by:

ρs ∼
∣∣∣∣T − TcTc

∣∣∣∣δ for T −→ Tc (7.28)

is exactly reproduced to be the one of a 3DXY model, i.e. δ ≈ 0.66,

and indeed correspond to the fact that the superconducting transition

is defined by eq. 6.10 which is essentially a 3DXY model; this result is

in very good agreement with experimental data, as analyzed in section

2.7.

• On the other hand the low-temperature linearity, i.e.

ρs ∼ 1− αT for T −→ 0 (7.29)

is reproduced by the model used in the present thesis down to quite

low temperatures, but the slope of ρs (T ) flattens as T −→ 0; this fact
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can be explained referring to the discussion of the validity of the MFA

approximation for very low temperatures in subsection 7.2.2. An a

posteriori linear extrapolation for very low temperatures, thoroughly

justified in subsection 7.2.2, shows, indeed, a very good agreement with

all the general features superfluid density in cuprate.

• We have also been able to reproduce the Uemura relation, i.e. the

observation originally made by Uemura and coworkers that in the un-

derdoped regime the following linearity relation holds

Tc ∝ ρs (T = 0)

as the doping is varied. This empirical law can be verified by cal-

culating the superfluid density for various dopings, in the underdoped

regime, and then drawing a straight line connecting, for every ρs curve,

the x-axis intercept and the y-axis intercept. It is cleary seen that the

Uemura relation is equivalent to requiring that the slopes of those lines

should be constant when the doping is varied; the reader can refer to

7.6. A comparison of fig. 7.5 and fig. 7.7 immediately shows that the

linearity is reproduced quite accurately.

We also note that, should an experiment be able to measure14 ρFs the

observed superfluid density should be given by the sum of the contributions

in fig. 7.1 and in fig. 7.3. Consequently a high-temperature tail extending

beyond Tc and up to Tps should be observed according to the model used

throughout this thesis. This unique feature is a direct consequence of spin-

charge separation and of the fact the superconductivity is achieved in three

different steps.

14We do not discuss here the technical feasibility of such a measure.
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Figure 7.5: The Uemura plot as derived from the model used in the present

thesis: each point in the graph corresponds to different doping value, follow-

ing the line from left to right they are from δ = 0.095 to δ = 0.12 at 0.005

steps. Both in the x and the y axis arbitrary units are used.
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Figure 7.6: ρs,2 (no linear extrapolation is used for low T s) as a function of

the temperature for various doping values in the underdoped regime.

Figure 7.7: The Uemura plot as presented in [45]. Each different symbol

type corresponds to a different cuprate compounds, doping is increased for

identical compound going from left to right. The relaxation rate σ (T = 0)

is ∝ ρs (T = 0)





Chapter 8

Conclusion and future

developments

We sum up the results of the present thesis: we were able to demonstrate

that the model used in this thesis is able to correctly reproduce some essential

features of superfluid density in cuprates, namely:

• The critical exponent of the superfluid density, which turns out the be

exactly the one of a three-dimensional XY model.

• The Uemura relation, i.e. a linear relation between the zero-temperature

superfluid density and and the critical temperature at which supercon-

ductivity ensues, holding for a wide range of dopings in the underdoped

regime.

The very low-temperature behaviour of superfluid density, on the other

hand, is not exactly reproduced due to the MFAs used which are not as

accurate for very low temperatures. An extrapolation procedure which yields

correct results even for very low temperatures has been proposed, justified

and thoroughly discussed.

As a result of the present thesis we also conjecture that, as opposed

to BCS superconductors, the difference between ρFs and ρEMs should be ob-

121
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servable in cuprates: usually in experiments the electromagnetically-defined

superfluid density is measured; we propose that in an experiment sensitive

to the mechanically-defined superfluid density a different behaviour should

be observed, with a non-zero superfluid density extending even in a range of

temperature above Tc.

As far as future developments are concerned we note that, being the

present thesis based on the model introduced in [7], it is consequently con-

sistent with the parameters choice used by authors of the paper; one could

try tuning the parameters of the model in a different way in order to see if

the accordance of ρs with experimental data could be improved. In particu-

lar the low-temperature flat behaviour of ρs does not seem to be an essential

feature of the model. However, in doing that great care should be taken

in order to retain the correctness of other physical features (e.g. the phase

diagram).



Chapter 9

Acknowledgements

Desidero ringraziare il prof. Pieralberto Marchetti per la pazienza con la

quale ha seguito il mio lavoro e per avermi fatto appassionare ai meravigliosi

argomenti che ho trattato in questa tesi.

Un grandissimo grazie va ai miei genitori, che mi supportano e mi sop-

portano, hanno sempre creduto in me e sono sempre stati i miei fan numero

uno. Grazie mamma, grazie papà! E un altrettanto grande grazie va alla

mia sorellina Claudia che, anche se spesso distante, riesce sempre ad essere

presente. E a tutta la mia famiglia.

I ringraziamenti non sarebbero completi senza includere tutti gli amici

che hanno reso straordinari e indimenticabili questi anni di Università: è per

merito loro che ogni secondo della mia vita universitaria è stato divertente,

emozionante, colorato; è per colpa loro che mi dispiace lasciare — tempo-

raneamente? — Padova. Agli amici della mia compagnia, a quelli conosciuti

a Padova, ai murialdini, ai compagni di corso un gigantesco grazie!

123





Bibliography

[1] G. B. Peacock, I. Gameson, and P. P. Edwards. Bulk synthesis of the

135 K superconductor HgBa2Ca2Cu3O8+δ. ChemInform, 28(21), 1997.

[2] J. G. Bednorz and K. A. Mueller. Perovskite-type oxides — the new

approach to high-Tc superconductivity. Nobel Lecture, December 1987.

[3] A.J. Leggett. Quantum liquids: Bose condensation and Cooper pairing

in condensed-matter systems. Oxford graduate texts in mathematics.

Oxford University Press, 2006.

[4] PW Anderson. The Resonating Valence Bond State in La2CuO4 and

Superconductivity. Science, 235(4793):1196–1198, March 1987.

[5] C. Kim, A. Y. Matsuura, Z.-X. Shen, N. Motoyama, H. Eisaki,

S. Uchida, T. Tohyama, and S. Maekawa. Observation of spin-charge

separation in one-dimensional SrCuO2. Phys. Rev. Lett., 77:4054–4057,

Nov 1996.

[6] B. J. Kim, H. Koh, E. Rotenberg, S.-J. Oh, H. Eisaki, N. Motoyama,

S. Uchida, T. Tohyama, S. Maekawa, Z.-X. Shen, and C. Kim. Distinct

spinon and holon dispersions in photoemission spectral functions from

one-dimensional SrCuO2. Nature Physics, 2:397–401, 2006.

125



126 Bibliography

[7] P A Marchetti and Z B Su. Hole pairing from attraction of oppo-

site chirality spin vortices: Non-BCS superconductivity in Underdoped

Cuprates. arXiv, cond-mat.supr-con, May 2011.

[8] L.D. Landau, E.M. Lifshitz, and L.P. Pitaevskii. Statistical Physics,

Part 2. Number v. 9 in Course of Theoretical Physics Vol. 9. Elsevier

Science, 1980.

[9] N.W. Ashcroft and N.D. Mermin. Solid state physics. Holt-Saunders

International Editions: Science : Physics. Holt, Rinehart and Winston,

1976.

[10] NV Prokof’ev. Two definitions of superfluid density. arXiv.org, 1999.

[11] Edward Taylor. Josephson relation for the superfluid density in the

BCS-BEC crossover. Physical Review B, 77(14), April 2008.

[12] E Taylor, A Griffin, N Fukushima, and Y Ohashi. Pairing fluctuations

and the superfluid density through the BCS-BEC crossover. arXiv,

cond-mat.other, September 2006.

[13] Michael E. Fisher, Michael N. Barber, and David Jasnow. Helicity

Modulus, Superfluidity, and Scaling in Isotropic Systems. Phys.Rev.,

A8:1111–1124, 1973.

[14] A. Altland and B. Simons. Condensed Matter Field Theory. Cambridge

University Press, 2010.

[15] M. Akarsu S. Karakaya, O. Ozbas. The temperature dependence of mag-

netic penetration depth in superconductors. Journal of optoelectronics

and advanced materials, 13(7):807–811, 2011.

[16] et al. Hardy W. N. Precision measurements of the temperature de-

pendence of λ in yttrium barium copper oxide (YBa2Cu3O6.95): strong



Bibliography 127

evidence for nodes in the gap function. Phys. Rev. Lett., 70:3999–4002,

1993.

[17] Jacobs T. et al. In-plane and c-axis microwave penetration depth of

Bi2Sr2Ca1Cu2O8+δ crystals. Phys. Rev. Lett., 75:4516–9, 1995.

[18] Shih-Fu Lee, D. C. Morgan, R. J. Ormeno, D. M. Broun, R. A. Doyle,

J. R. Waldram, and K. Kadowaki. a − b plane microwave surface

impedance of a high-quality bi2sr2cacu2o8 single crystal. Phys. Rev.

Lett., 77:735–738, Jul 1996.

[19] C. Panagopoulos, J. R. Cooper, G. B. Peacock, I. Gameson, P. P.

Edwards, W. Schmidbauer, and J. W. Hodby. Anisotropic magnetic

penetration depth of grain-aligned HgBa2Ca2Cu3O8+δ. Phys. Rev. B,

53:R2999–R3002, Feb 1996.

[20] R. Prozorov and R. W. Giannetta. Topical review: Magnetic penetra-

tion depth in unconventional superconductors. Superconductor Science

Technology, 19:41, August 2006.

[21] S. Kamal, DA Bonn, N. Goldenfeld, PJ Hirschfeld, R. Liang, and

WN Hardy. Penetration Depth Measurements of 3D XY Critical Be-

havior in YBa2Cu3O6.95 Crystals. Phys. Rev. Lett., 73(13):1845–1848,

1994.

[22] K. D. Osborn, D. J. Van Harlingen, Vivek Aji, Nigel Goldenfeld,

S. Oh, and J. N. Eckstein. Critical dynamics of superconducting

Bi2Sr2CaCu2O8+δ films. Phys. Rev. B, 68:144516, Oct 2003.

[23] T. Ohashi, H. Kitano, I. Tsukada, and A. Maeda. Critical charge dynam-

ics of superconducting LSCO thin films probed by complex microwave

spectroscopy: Anomalous changes of the universality class by hole dop-

ing. ArXiv e-prints, October 2007.



128 Bibliography

[24] N. Plakida. High-Temperature Cuprate Superconductors: Experiment,

Theory, and Applications. Springer Series in Solid-State Sciences.

Springer, 2010.

[25] B. V. Vasiliev. About the London penetration depth. ArXiv e-prints,

January 2011.

[26] Y. J. Uemura, L. P. Le, G. M. Luke, B. J. Sternlieb, W. D. Wu, J. H.

Brewer, T. M. Riseman, C. L. Seaman, M. B. Maple, M. Ishikawa, D. G.

Hinks, J. D. Jorgensen, G. Saito, and H. Yamochi. Basic similarities

among cuprate, bismuthate, organic, chevrel-phase, and heavy-fermion

superconductors shown by penetration-depth measurements. Phys. Rev.

Lett., 66:2665–2668, May 1991.

[27] Chandra Varma. High-temperature superconductivity: Mind the pseu-

dogap. Nature, 468:184–185, 2010.

[28] F. C. Zhang and T. M. Rice. Effective hamiltonian for the supercon-

ducting cu oxides. Phys. Rev. B, 37:3759–3761, Mar 1988.

[29] P A Marchetti, Zhao-Bin Zhao-Bin Su, and Lu Yu. U(1)×SU(2) Chern-

Simons gauge theory of underdoped cuprate superconductors. Physical

Review B, 58(9):5808, September 1998.

[30] J. Fröhlich, T. Kerler, and P.A. Marchetti. Non-abelian bosoniza-

tion in two-dimensional condensed matter physics. Nuclear Physics B,

374(3):511 – 542, 1992.

[31] P A Marchetti, Zhao-Bin Zhao-Bin Su, and Lu Yu. Dimensional reduc-

tion of U(1) × SU(2) Chern-Simons bosonization: Application to the

t-J model. Nuclear Physics B, 482(3):731–757, December 1996.



Bibliography 129

[32] W. O. Putikka, R. L. Glenister, R. R. P. Singh, and H. Tsunetsugu.

Indications of spin-charge separation in the two-dimensional t-J model.

Physical Review Letters, 73:170–173, July 1994.

[33] Michele Gambaccini. Pairing and superconductivity in a spin-charge

gauge approach to HTS cuprates. PhD in Physics, Università degli Studi

di Padova, 2011.

[34] M Yu Kuchiev and O P Sushkov. Large size two-hole bound states in

t-J model. arXiv, cond-mat, March 1994.

[35] S. N. M. Ruijsenaars. On Bogoliubov transformations for systems of

relativistic charged particles. Journal of Mathematical Physics, 18:517–

526, March 1977.

[36] J Tempere, S Klimin, and J Devreese. Effect of population imbalance

on the Berezinskii-Kosterlitz-Thouless phase transition in a superfluid

Fermi gas. Physical Review. A, 79(5), May 2009.

[37] G.’t Hooft. Renormalizable lagrangians for massive yang-mills fields.

Nuclear Physics B, 35(1):167 – 188, 1971.

[38] N.K. Kultanov and Yu.E. Lozovik. The critical behavior of the 3d x-y

model and its relation with fractal properties of the vortex excitations.

Physics Letters A, 223(3):189 – 194, 1996.

[39] Anders W. Sandvik. Computational studies of quantum spin sys-

tems. Lecture notes, available at http://physics.bu.edu/~sandvik/

vietri/vietri.pdf, 2010.

[40] D. Prato and D. E. Barraco. Bogoliubov inequality. Rev. Mex. Fis.,

42:145 – 150, 1996.

[41] Michael E. Peskin and Dan V. Schroeder. An Introduction To Quantum

Field Theory (Frontiers in Physics). Westview Press, 1995.

http://physics.bu.edu/~sandvik/vietri/vietri.pdf
http://physics.bu.edu/~sandvik/vietri/vietri.pdf


130 Bibliography

[42] J. Glimm and A. Jaffe. Quantum Physics: A Functional Integral Point

of View. Springer-Verlag, 1987.

[43] Uwe-Jens Wiese. Quantum field theory. Lecture notes, available at

http://www.wiese.itp.unibe.ch/lectures/fieldtheory.pdf, 2007.

[44] Ulli Wolff. Collective monte carlo updating for spin systems. Phys. Rev.

Lett., 62:361–364, Jan 1989.

[45] Y. J. et al. Uemura. Universal correlations between Tc and ns
m∗ (carrier

density over effective mass) in high-Tc cuprate superconductors. Phys.

Rev. Lett., 62:2317–2320, May 1989.

http://www.wiese.itp.unibe.ch/lectures/fieldtheory.pdf


Appendix A

The term p2
2

2µ2p2 in
(
L−1

)11 gives a contribution toW [J ] (and to the partition

function) which is proportional to:

∫
d3x

∫
d3y

∫
d3k

(2π)3

k2
2

k2
eik(x−y)

where it is understood that the integration over x and y is performed

over a domain D characterized by a small-distances cutoff, the exact value

of the cutoff does not matter for the aims of the present discussion. By

means of the same techniques used in section 7.2, starting from eq. 7.20,

one can perform the integration of the 0 component of each one of the three

integrals, obtaining:

β

∫
d2x

∫
d2y

∫
d2k

(2π)2

k2
2

k2
1 + k2

2

eik(x−y)

and the small-distances cutoff just discussed can be made explicit by

changing the spatial integration variables:

β

∫
d2(x+ y)

∫
D

d2(x− y)

∫
d2k

(2π)2

k2
2

k2
1 + k2

2

eik(x−y)

By evaluating the Fourier transform in the innermost integral one ob-

tains:

β

∫
d2u

∫
D

d2v

[
2πδ(2) (v) +

− (v1)2 + (v2)2

|v|4
(θ(v1) + θ (−v1))

]
(A.1)
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with u ≡ x + y, v ≡ x − y and with θ (#) denoting the Heaviside step

function. The small-distances cutoff is fundamental in the final evaluation

of the integral; clearly it makes the integration avoid the origin so that the

Dirac’s δ (#) does not yield any contribution and it also allows us to replace

the sum of the two step functions with 1. Moreover by noting the the only

singularity in the integrand of the remaing part is avoided, again thanks to

the domain definition:

∫
D

dv1dv2

[
− v2

1(
v2

1 + v2
2

)2 +
v2

2(
v2

1 + v2
2

)2
]

it is easily seen that by swapping the dummy v1 and v2 variables in

the second term the two terms cancel themselves out. That concludes our

demonstration.



Appendix B

Calculation of the interaction

integral

In this appendix we calculate the interaction integral, whose result has been

given without demonstration in eq. 7.22. The integral can be written as:

I =

∫ 1

0
dx1

∫ 1

0
dy1

∫ 1

0
dx2

∫ 1

0
dy2 ln

(√
(x1 − x2)2 + (y1 − y2)2

)
=

=
1

2

∫
[0,1]4

dx1dy1dx2dy2 ln
(

(x1 − x2)2 + (y1 − y2)2
)

Now we use following variable change:


u =

√
2

2
x−y

2

v =
√

2
2

1+x+y
2

which also implies that the integration domain must be modified as fol-

lows:

∫ 1

0
dx

∫ 1

0
dy −→

∫ √
2

2

−
√

2
2

du

∫ √
2

2
−|u|

−
√

2
2

+|u|
dv
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The geometrical meaning of the variable and integration domain change

is clear by looking at fig. B.1. Using the substitution two times in the

integral for I, as follows:

Figure B.1: The variable change as explained in the text, O being the old

coordinate system and O′, in gray, being the new one.



α =
√

2
2 (x1 − x2)

β =
√

2
2 (1 + x1 + x2)

γ =
√

2
2 (y1 − y2)

δ =
√

2
2 (1 + y1 + y2)

it can be rewritten as:

I =
1

2

∫ +
√

2
2

−
√

2
2

dα

∫ +
√

2
2
−|α|

−
√

2
2

+|α|
dβ

∫ +
√

2
2

−
√

2
2

dγ

∫ +
√

2
2
−|γ|

−
√

2
2

+|γ|
dδ ln

(
2α2 + 2γ2

)
=
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= 8

∫ √
2

2

0
dα

∫ √
2

2

0
dγ

(√
2

2
− |α|

)(√
2

2
− |γ|

)
ln
(
2α2 + 2γ2

)
By rescaling the integration variables (α −→ α√

2
, γ −→ γ√

2
) the integral

becomes:

I = 8

(
1√
2

)2 ∫ 1

0
dα

∫ 1

0
dγ

(√
2

2
−
√

2

2
α

)(√
2

2
−
√

2

2
γ

)
ln
(
α2 + γ2

)
=

= 2

∫ 1

0
dα

∫ 1

0
dγ (1− α) (1− γ) ln

(
α2 + γ2

)
Switching to polar coordinates:


α = ρ cos (θ)

γ = ρ sin (θ)

the integral for I now reads:

I = 4

∫ π
2

0
dθ

∫ f(θ)

0
ρdρ (1− ρ cos (θ)) (1− ρ sin (θ)) ln (ρ)

where f (θ) is a function which determines the area of integration, which

is [0, 1]2, i.e. a 1× 1 square:

f (θ) =


√

tan (θ)2 + 1 if 0 ≤ θ ≤ π
4√

tan
(
θ − π

2

)2
+ 1 if π4 < θ ≤ π

2

In order to carry out the integrals above we note that they are all in the

form
∫
xn ln (x) dx, which can be integrated by parts obtaining:

∫
xn ln (x) dx =

1

n+ 1
xn+1 ln (x)− 1

(n+ 1)2x
n+1 + C (B.1)

The identity above can also be easily verified by direct calculation. We

then define Iρn =
∫
ρn ln (ρ) dρ such that:
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I = 4

∫ π
2

0
dθ (Iρ1 − (cos (θ) + sin (θ)) Iρ2 + cos (θ) sin (θ) Iρ3 |

f(θ)
0

and the integrals can now be performed by using eq. B.1, yielding as a

result:


I1 = f2(θ) ln(f(θ))

2 − f2(θ)
4

I2 = f3(θ) ln(f(θ))
3 − f3(θ)

9

I3 = f3(θ) ln(f(θ))
4 − f3(θ)

16

so that:

I = 4

∫ 2π

0
dθ (I1 − I2 cos (θ) sin (θ) + I3 cos (θ) sin (θ)) ≡ 4

∫ 2π

0
dθ (J1 + J2 + J3)

Even these integrals can be evaluated analytically, although the calcula-

tion is very lengthy; the results are given in the table below:

Primitive in the interval θ ∈
[
0, π4

]
J1

1
4

(
2θ − 2 tan θ + log(sec2(θ)) tan(θ)

)
− tan( θ4)

J2 A+ 1
18 |sec(θ)| (sec(θ) + sin(θ))

J3 B − 1
32 sec2(θ)

Primitive in the interval θ ∈
[
π
4 ,

π
2

]
J1

1
4

(
2θ − 2 cot θ + log(csc2(θ)) cot(θ)

)
− cot( θ4)

J2 C + 1
18 |csc(θ)| (csc(θ) + cos(θ))

J3
1
16(csc2(θ)− csc2(θ) log(csc2(θ))) + 1

32 cot2(θ)

A −1 + 2θ + 2θ cos (2θ) + log(sec2(θ)) +
(
−2 + log(sec2(θ))

)
sin (2θ)

B 1
16

(
− sec2 (θ)

)
+ log

(
sec2(θ))

)
sec2(θ)

C
− 1

12 |csc (θ)|3 sin (θ)2 [4 cos (θ) + csc (θ) + 4θ sin (θ) +

− csc (θ) log
(
csc2 (θ)

)
(cos (θ) + sin (θ))2

]
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and by evaluating the primitives at θ = π
2 and θ = 0 one gets the final

result which is:

I = −−25 + 4π + 2 log (4)

12
≈ 0, 805

as anticipated in eq. 7.22.
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