Composite, rotating impurities interacting with a many-body environment: analytical and numerical approaches

G. Bighin and M. Lemeshko

Institute of Science and Technology Austria

Physics Colloquium, University of Nevada Reno, October 31st, 2018

Quantum impurities

Definition: one (or a few particles) interacting with a many-body environment.

- Condensed matter
- Chemistry
- Ultracold atoms

How are the properties of the particle modified by the interaction?

$\mathcal{O}\left(10^{23}\right)$ degrees of freedom.

From impurities to quasiparticles

Structureless impurity: translational degrees of freedom/linear momentum exchange with the bath.

Most common cases: electron in a solid, atomic impurities in a BEC.

From impurities to quasiparticles

Structureless impurity: translational degrees of freedom/linear momentum exchange with the bath.

Most common cases: electron in a solid, atomic impurities in a BEC.

Image from: F. Chevy, Physics 9, 86.

From impurities to quasiparticles

Structureless impurity: translational degrees of freedom/linear momentum exchange with the bath.

Most common cases: electron in a solid, atomic impurities in a BEC.

Image from: F. Chevy, Physics 9, 86.

From impurities to quasiparticles

Structureless impurity: translational degrees of f exchange w

Most comm lich Hamiltonian.

Image from: F. Chevy, Physics 9, 86.

From impurities to quasiparticles

Structureless impurity: translational degrees of f exchange w Most comm lich Hamiltonian.

Image from: F. Chevy, Physics 9, 86.

Composite impurity: translational and internal (i.e. rotational) degrees of freedom/linear and angular momentum exchange.

From impurities to quasiparticles

Structureless impurity: translational degrees of f exchange w

Most comm
This scenario can be formalized in terms of quasiparticles using the polaron and the Fröhlich Hamiltonian.

Image from: F. Chevy, Physics 9, 86.

What about a rotating particle? Can there be a rotating counterpart of the polaron quasiparti-

1d internal near and cle? The main difficulty: the non-Abelian $\mathrm{SO}(3)$ algebra describing rotations.

The angulon

A composite impurity in a bosonic environment can be described by the angulon Hamiltonian ${ }^{1,2,3,4}$ (angular momentum basis: $\mathbf{k} \rightarrow\{k, \lambda, \mu\}$):

$$
\hat{H}=\underbrace{B \hat{J}^{2}}_{\text {molecule }}+\underbrace{\sum_{k \lambda \mu} \omega_{k} \hat{b}_{k \lambda \mu}^{\dagger} \hat{b}_{k \lambda \mu}}_{\text {phonons }}+\underbrace{\sum_{k \lambda \mu} U_{\lambda}(k)\left[\gamma_{\lambda \mu}^{*}(\hat{\theta}, \hat{\phi}) \hat{b}_{k \lambda \mu}^{\dagger}+Y_{\lambda \mu}(\hat{\theta}, \hat{\phi}) \hat{b}_{k \lambda \mu}\right]}_{\text {molecule-phonon interaction }}
$$

- Linear molecule.
- Derived rigorously for a molecule in a weakly-interacting BEC ${ }^{1}$.
- Phenomenological model for a molecule in any kind of bosonic bath ${ }^{3}$.

${ }^{1}$ R. Schmidt and M. Lemeshko, Phys. Rev. Lett. 114, 203001 (2015).
${ }^{2}$ R. Schmidt and M. Lemeshko, Phys. Rev. X 6, 011012 (2016).
${ }^{3}$ M. Lemeshko, Phys. Rev. Lett. 118, 095301 (2017).
${ }^{4}$ Y. Shchadilova, "Viewpoint: A New Angle on Quantum Impurities", Physics 10, 20 (2017).

The angulon

A composite impurity in a bosonic environment can be described by the angulon Hamiltonian ${ }^{1,2,3,4}$ (angular momentum basis: $\mathbf{k} \rightarrow\{k, \lambda, \mu\}$):

${ }^{1}$ R. Schmidt and M. Lemeshko, Phys. Rev. Lett. 114, 203001 (2015).
${ }^{2}$ R. Schmidt and M. Lemeshko, Phys. Rev. X 6, 011012 (2016).
${ }^{3}$ M. Lemeshko, Phys. Rev. Lett. 118, 095301 (2017).
${ }^{4}$ Y. Shchadilova, "Viewpoint: A New Angle on Quantum Impurities", Physics 10, 20 (2017).

Composite impurities: where to find them

Strong motivation for the study of composite impurities comes from many different fields. Composite impurities are realized as:

- Molecules embedded into helium nanodroplets.

Image from: J. P. Toennies and A. F. Vilesov, Angew. Chem. Int. Ed. 43, 2622 (2004).

Composite impurities: where to find them

Strong motivation for the study of composite impurities comes from many different fields. Composite impurities are realized as:

- Molecules embedded into helium nanodroplets.
- Ultracold molecules and ions.

B. Midya, M. Tomza, R. Schmidt, and M. Lemeshko, Phys. Rev. A 94, 041601(R) (2016).

Composite impurities: where to find them

Strong motivation for the study of composite impurities comes from many different fields. Composite impurities are realized as:

- Molecules embedded into helium nanodroplets.
- Ultracold molecules and ions.
- Rotating molecules inside a 'cage’ in perovskites.

T. Chen et al., PNAS 114, 7519 (2017).
J. Lahnsteiner et al., Phys. Rev. B 94, 214114 (2016).

Image from: C. Eames et al, Nat. Comm. 6, 7497 (2015).

Composite impurities: where to find them

Strong motivation for the study of composite impurities comes from many different fields. Composite impurities are realized as:

- Molecules embedded into helium nanodroplets.
- Ultracold molecules and ions.
- Rotating molecules inside a 'cage' in perovskites.
- Angular momentum transfer from the electrons to a crystal lattice.
J.H. Mentink, M.I. Katsnelson, M. Lemeshko, "Quantum many-body dynamics of the Einstein-de Haas effect", arXiv:1802.01638

Composite impurities: where to find them

Strong motivation for the study of composite impurities comes from many different fields. Composite impurities are realized as:

- Molecule First part: angular momentum and Feynman helium n diagrams.

Second part: out-of-equilibrium dynamics of

- Ultracol molecules in He nanodroplets.
- Rotating molecules inside a 'cage' in perovskites.
- Angular momentum transfer from the electrons to a crystal lattice.

Angular momentum and Feynman diagrams

Perturbative approach and Feynman diagrams

Back to the angulon Hamiltonian:

$$
\hat{H}=\underbrace{B \hat{\jmath}^{2}}_{\text {molecule }}+\underbrace{\sum_{k \lambda \mu} \omega_{k} \hat{b}_{k \lambda \mu}^{\dagger} \hat{b}_{k \lambda \mu}}_{\text {phonons }}+\underbrace{\sum_{k \lambda \mu} U_{\lambda}(k)\left[Y_{\lambda \mu}^{*}(\hat{\theta}, \hat{\phi}) \hat{b}_{k \lambda \mu}^{\dagger}+Y_{\lambda \mu}(\hat{\theta}, \hat{\phi}) \hat{b}_{k \lambda \mu}\right]}_{\text {molecule-phonon interaction }}
$$

Perturbative approach and Feynman diagrams

Back to the angulon Hamiltonian:

$$
\hat{H}=\underbrace{B \hat{\jmath}^{2}}_{\text {molecule }}+\underbrace{\sum_{k \lambda \mu} \omega_{k} \hat{b}_{k \lambda \mu}^{\dagger} \hat{b}_{k \lambda \mu}}_{\text {phonons }}+\underbrace{\sum_{k \lambda \mu} U_{\lambda}(k)\left[Y_{\lambda \mu}^{*}(\hat{\theta}, \hat{\phi}) \hat{b}_{k \lambda \mu}^{\dagger}+Y_{\lambda \mu}(\hat{\theta}, \hat{\phi}) \hat{b}_{k \lambda \mu}\right]}_{\text {molecule-phonon interaction }}
$$

Perturbation theory/Feynman diagrams:

How does angular momentum enter this picture?

Perturbative approach and Feynman diagrams

Back to the angulon Hamiltonian:

$$
\hat{H}=\underbrace{B \hat{\jmath}^{2}}_{\text {molecule }}+\underbrace{\sum_{k \lambda \mu} \omega_{k} \hat{b}_{k \lambda \mu}^{\dagger} \hat{b}_{k \lambda \mu}}_{\text {phonons }}+\underbrace{\sum_{k \lambda \mu} U_{\lambda}(k)\left[Y_{\lambda \mu}^{*}(\hat{\theta}, \hat{\phi}) \hat{b}_{k \lambda \mu}^{\dagger}+Y_{\lambda \mu}(\hat{\theta}, \hat{\phi}) \hat{b}_{k \lambda \mu}\right]}_{\text {molecule-phonon interaction }}
$$

Perturbation theory/Feynman diagrams:

Fröhlich polaron

Perturbative approach and Feynman diagrams

Back to the angulon Hamiltonian:

$$
\hat{H}=\underbrace{B \hat{\jmath}^{2}}_{\text {molecule }}+\underbrace{\sum_{k \lambda \mu} \omega_{k} \hat{b}_{k \lambda \mu}^{\dagger} \hat{b}_{k \lambda \mu}}_{\text {phonons }}+\underbrace{\sum_{k \lambda \mu} U_{\lambda}(k)\left[Y_{\lambda \mu}^{*}(\hat{\theta}, \hat{\phi}) \hat{b}_{k \lambda \mu}^{\dagger}+Y_{\lambda \mu}(\hat{\theta}, \hat{\phi}) \hat{b}_{k \lambda \mu}\right]}_{\text {molecule-phonon interaction }}
$$

Perturbation theory/Feynman diagrams:

Angulon

Perturbative approach and Feynman diagrams

Back to the angulon Hamiltonian:

$$
\hat{H}=\underbrace{B \hat{\jmath}^{2}}_{\text {molecule }}+\underbrace{\sum_{k \lambda \mu} \omega_{k} \hat{b}_{k \lambda \mu}^{\dagger} \hat{b}_{k \lambda \mu}}_{\text {phonons }}+\underbrace{\sum_{k \lambda \mu} U_{\lambda}(k)\left[\gamma_{\lambda \mu}^{*}(\hat{\theta}, \hat{\phi}) \hat{b}_{k \lambda \mu}^{\dagger}+Y_{\lambda \mu}(\hat{\theta}, \hat{\phi}) \hat{b}_{k \lambda \mu}\right]}_{\text {molecule-phonon interaction }}
$$

Perturbation theory/Feynman diagrams:

Angulon

Feynman rules

Each free propagator

$\lambda_{i} \mu_{i}$

$$
\sum_{\lambda_{i} \mu_{i}}(-1)^{\mu_{i}} G_{0, \lambda_{i}}
$$

Each phonon propagator

$$
\sum_{\lambda_{i} \mu_{i}}(-1)^{\mu_{i} D_{\lambda_{i}}}
$$

Each vertex

$$
(-1)^{\lambda_{i}}\left\langle\lambda_{i}\right|\left|r^{\left(\lambda_{j}\right)}\right|\left|\lambda_{k}\right\rangle\left(\begin{array}{lll}
\lambda_{i} & \lambda_{j} & \lambda_{k} \\
\mu_{i} & \mu_{j} & \mu_{k}
\end{array}\right)
$$

GB and M. Lemeshko, Phys. Rev. B 96, 419 (2017).

Usually momentum conservation is enforced by an appropriate labeling.

Not the same for angular momentum, j and λ couple to
$|j-\lambda|, \ldots, j+\lambda$.

Feynman rules

Each free propagator

\qquad

$$
\sum_{\lambda_{i} \mu_{i}}(-1)^{\mu_{i}} G_{0, \lambda_{i}}
$$

Each phonon propagator

$$
\lambda_{i} \mu_{i} \longrightarrow-\quad-\quad
$$

$$
\sum_{\lambda_{i} \mu_{i}}(-1)^{\mu_{i}} D_{\lambda_{i}}
$$

Each vertex

$$
(-1)^{\lambda_{i}}\left\langle\lambda_{i}\right|\left|\gamma^{\left(\lambda_{j}\right)}\right|\left|\lambda_{k}\right\rangle\left(\begin{array}{lll}
\lambda_{i} & \lambda_{j} & \lambda_{k} \\
\mu_{i} & \mu_{j} & \mu_{k}
\end{array}\right)
$$

GB and M. Lemeshko, Phys. Rev. B 96, 419 (2017).
Diagrammatic theory of angular momentum (developed in the context of theoretical atomic spectroscopy)

Angulon spectral function

Let us use the Feynman diagrams! The plan is:

1. Self-energy (Σ)
2. Dyson equation to obtain the angulon Green's function (G)
3. Spectral function (\mathcal{A})

Angulon spectral function

Let us use the Feynman diagrams! The plan is:

1. Self-energy (Σ)
2. Dyson equation to obtain the angulon Green's function (G)
3. Spectral function (\mathcal{A})

First order:

Equivalent to a simple, 1-phonon variational Ansatz (cf. Chevy Ansatz for the polaron)

$$
|\psi\rangle=Z_{L M}^{1 / 2}|0\rangle|L M\rangle+\sum_{\substack{k \lambda \mu \\ j m}} \beta_{k \lambda j} C_{j m, \lambda \mu}^{L M} b_{k \lambda \mu}^{\dagger}|0\rangle|j m\rangle
$$

Angulon spectral function

Let us use the Feynman diagrams! The plan is:

1. Self-energy (Σ)
2. Dyson equation to obtain the angulon Green's function (G)
3. Spectral function (\mathcal{A})

Angulon spectral function

Let us use the Feynman diagrams! The plan is:

1. Self-energy (Σ)
2. Dyson equation to obtain the angulon Green's function (G)
3. Spectral function (\mathcal{A})

Second order:

Angulon spectral function

Let us use the Feynman diagrams! The plan is:

1. Self-energy (Σ)
2. Dyson equation to obtain the angulon Green's function (G)
3. Spectral function (\mathcal{A})

Dyson equation

Angulon spectral function

Let us use the Feynman diagrams! The plan is:

1. Self-energy (Σ)
2. Dyson equation to obtain the angulon Green's function (G)
3. Spectral function (\mathcal{A})

Finally the spectral function allows for a study the whole excitation spectrum of the system:

$$
\mathcal{A}_{\lambda}(E)=-\frac{1}{\pi} \operatorname{Im} G_{\lambda}\left(E+\mathrm{io}^{+}\right)
$$

Angulon quasiparticle spectrum

Angulon quasiparticle spectrum as a function of the bath density:

Angulon quasiparticle spectrum

Angulon quasiparticle spectrum as a function of the bath density:

Angulon spectral function: low density

Low density: free rotor spectrum, $E=B L(L+1)$.

Many-body-induced fine structure ${ }^{1}$: upper phonon wing (one phonon with $\lambda=0$, isotropic interaction).
[1] R. Schmidt and M. Lemeshko, Phys. Rev. Lett. 114, 203001 (2015).

Angulon spectral function: instability

Intermediate region: angulon instability. Many-body resonance, corresponding to the emission of a phonon with $\lambda=1$ (due to anisotropic interaction).

Experimental observation: I. N. Cherepanov, M. Lemeshko, "Fingerprints of angulon instabilities in the spectra of matrix-isolated molecules", Phys. Rev. Materials 1, 035602 (2017).

Angulon spectral function: high density

High density: the two-loop corrections start to be relevant.

What about higher orders?

At order n : n integrals, and higher angular momentum couplings ($3 n-j$ symbols).

A feasible plan?

Notice the logarithmic scale: exponentially rare, since they are exponentially more difficult to compute.

A feasible plan?

Notice the logarithmic scale: exponentially rare, since they are exponentially more difficult to compute.

For monster stuff, like a 303-j symbol taking 2.3 years to compute, see: C. Brouder and G. Brinkmann, Journal of Electron Spectroscopy and Related Phenomena 86, 127 (1997).

Diagrammatic Monte Carlo

Numerical technique for summing all Feynman diagrams ${ }^{1}$. More on this later...

Up to now: structureless particles (Fröhlich polaron, Holstein polaron), or particles with a very simple internal structure (e.g. spin $1 / 2$).

Molecules ${ }^{2}$? Connecting DiagMC and molecular simulations!

[^0]
Diagrammatic Monte Carlo

Hamiltonian for an impurity problem: $\hat{H}=\hat{H}_{\text {imp }}+\hat{H}_{\text {bath }}+\hat{H}_{\text {int }}$

Green's function

DiagMC idea: set up a stochastic process sampling among all diagrams ${ }^{1}$. Configuration space: diagram topology, phonons internal variables, times, etc... Number of variables varies with the topology!

How: ergodicity, detailed balance $w_{1} p(1 \rightarrow 2)=w_{2} p(2 \rightarrow 1)$
Result: each configuration is visited with probability \propto its weight.
${ }^{1}$ N. V. Prokof'ev and B. V. Svistunov, Phys. Rev. Lett. 81, 2514 (1998).

Diagrammatic Monte Carlo

Hamiltonian for an impurity problem: $\hat{H}=\hat{H}_{\text {imp }}+\hat{H}_{\text {bath }}+\hat{H}_{\text {int }}$

Green's function

DiagMC idea Configuratio etc... Numbe

Works in continuous time and in the thermodynamic limit: no finite-size effects or systematic errors.
How: ergodi
Result: each configuration is visited with probability \propto its weight.
${ }^{1}$ N. V. Prokof'ev and B. V. Svistunov, Phys. Rev. Lett. 81, 2514 (1998).

Updates

We need updates spanning the whole configuration space:

Updates

We need updates spanning the whole configuration space:
Add update: a new arc is added to a diagram.

Updates

We need updates spanning the whole configuration space:
Add update: a new arc is added to a
 diagram.

Updates

We need updates spanning the whole configuration space:
Add update: a new arc is added to a
 diagram.

Updates

We need updates spanning the whole configuration space:
Add update: a new arc is added to a
 diagram.
Remove update: an arc is removed from the diagram.

Updates

We need updates spanning the whole configuration space:
Add update: a new arc is added to a diagram.
Remove update: an arc is removed from the diagram.

Updates

We need updates spanning the whole configuration space:
Add update: a new arc is added to a diagram.
Remove update: an arc is removed from the diagram.
Change update: modifies the total length of the diagram.

Updates

We need updates spanning the whole configuration space:
Add update: a new arc is added to a diagram.
Remove update: an arc is removed from the diagram.
Change update: modifies the total length of the diagram.

Updates

We need updates spanning the whole configuration space:
Add update: a new arc is added to a diagram.
Remove update: an arc is removed from the diagram.
Change update: modifies the total length of the diagram.

Updates

We need updates spanning the whole configuration space:

Add update: a new arc is added to a diagram.
Remove update: an arc is removed from the diagram.
Change update: modifies the total length of the diagram.

Result: the time the stochastic process spends with diagrams of length τ will be proportional to $G(\tau)$. One can fill a histogram after each update and get the Green's function.

Diagrammatics for a rotating impurity

Moving particle: linear momentum circulating on lines.

Rotating particle: angular momentum circulating on lines.

Diagrammatics for a rotating impurity

Moving particle: linear momentum circulating on lines.

\vec{k} and \vec{q} fully determine $\vec{k}-\vec{q}$

Rotating particle: angular momentum circulating on lines.

Diagrammatics for a rotating impurity

Moving particle: linear momentum circulating on lines.

Rotating particle: angular momentum circulating on lines.

It gets weirder... Down the rabbit hole of angular momentum composition!

Diagrammatics for a rotating impurity

Moving particle: linear momentum circulating on lines.

Rotating particle: angular momentum circulating on lines.

It gets weirder... Down the rabbit hole of angular momentum composition!

Diagrammatics for a rotating impurity

Moving particle: linear momentum circulating on lines.

Rotating particle: angular momentum circulating on lines.

The configuration space is more complex... and bigger! We need different updates.

Shuffle update: select one 1-particleirreducible component, shuffle the momenta jm couplings to another allowed configuration.

DiagMC: results

The ground-state energy of the angulon Hamiltonian obtained using DiagMC ${ }^{1}$ as a function of the dimensionless bath density, \tilde{n}, in comparison with the weak-coupling theory ${ }^{2}$ and the strong-coupling theory ${ }^{3}$.

The energy is obtained by fitting the
long-imaginary-time behaviour of G_{j} with $G_{j}(\tau)=Z_{j} \exp \left(-E_{j} \tau\right)$.

Inset: energy of the $L=0,1,2$ states.

${ }^{1}$ GB, T.V. Tscherbul, M. Lemeshko, Phys. Rev. Lett. 121, 165301 (2018).
${ }^{2}$ R. Schmidt and M. Lemeshko, Phys. Rev. Lett. 114, 203001 (2015).
${ }^{3}$ R. Schmidt and M. Lemeshko, Phys. Rev. X 6, 011012 (2016).

DiagMC: results

The ground-state energy of the angulon Hamiltonian obtained using DiagMC ${ }^{1}$ as a function of the dimensionless bath density, \tilde{n}, in comparison with the weak-coupling theory ${ }^{2}$ and the strong-coupling theory ${ }^{3}$.

The energy is obtained by fitting the long-imaginary-time behaviour of G_{j} with $G_{j}(\tau)=Z_{j} \exp \left(-E_{j} \tau\right)$.

Inset: energy of the $L=0,1,2$ states.

${ }^{1}$ GB, T.V. Tscherbul, M. Lemeshko, Phys. Rev. Lett. 121, 165301 (2018).
${ }^{2}$ R. Schmidt and M. Lemeshko, Phys. Rev. Lett. 114, 203001 (2015).
${ }^{3}$ R. Schmidt and M. Lemeshko, Phys. Rev. X 6, 011012 (2016).

Out-of-equilibrium dynamics of molecules in He nanodroplets

Dynamical alignment of molecules in He nanodroplets

Molecules embedded into helium nanodroplets:
-

Images from: J. P. Toennies and A. F. Vilesov, Angew. Chem. Int. Ed. 43, 2622 (2004).

Dynamical alignment of molecules in He nanodroplets

Molecules embedded into helium nanodroplets:

Images from: J. P. Toennies and A. F. Vilesov, Angew. Chem. Int. Ed. 43, 2622 (2004).

Dynamical alignment of molecules in He nanodroplets

Molecules embedded into helium nanodroplets:

Images from: J. P. Toennies and A. F. Vilesov, Angew. Chem. Int. Ed. 43, 2622 (2004).

Dynamical alignment of molecules in He nanodroplets

Dynamical alignment experiments:

- Kick pulse, aligning the molecule.
- Probe pulse, destroying the molecule.
- Fragments are imaged, reconstructing alignment as a function of time.
- Averaging over multiple realizations, and varying the time between the two pulses, one gets

$$
\left\langle\cos ^{2} \hat{\theta}_{2 \mathrm{D}}\right\rangle(t)
$$

with:

$$
\cos ^{2} \hat{\theta}_{2 D} \equiv \frac{\cos ^{2} \hat{\theta}}{\cos ^{2} \hat{\theta}+\sin ^{2} \hat{\theta} \sin ^{2} \hat{\phi}}
$$

Image from B. Shepperson et al., Phys. Rev. Lett. 118, 203203 (2017).

Dynamical alignment of molecules in He nanodroplets

Interaction of a free molecule with an off-resonant laser pulse

$$
\hat{H}=B \hat{\jmath}^{2}-\frac{1}{4} \Delta \alpha E^{2}(t) \cos ^{2} \hat{\theta}
$$

When acting on a free molecule, the laser excites in a short time many rotational states ($L \leftrightarrow L+2$), creating a rotational wave packet:

G. Kaya, Appl. Phys. B 6, 122 (2016).
\square

Dynamical alignment of molecules in He nanodroplets

Effect of the environment is substantial: free molecule vs. same molecule in He .

Stapelfeldt group, Phys. Rev. Lett. 110, 093002 (2013).

Not even a qualitative understanding. Monte Carlo?

- Strong coupling
- Out-of-equilibrium dynamics
- Finite temperature ($B \sim k_{B} T$)
Einite temperature (o

Canonical transformation

Bosons: laboratory frame (x, y, z)
Molecules: rotating frame $\left(x^{\prime}, y^{\prime}, z^{\prime}\right)$ defined by the Euler angles ($\hat{\phi}, \hat{\theta}, \hat{\gamma}$).

$$
\hat{S}=e^{-\mathrm{i} \hat{\phi} \otimes \hat{\Lambda}_{z}} e^{-\mathrm{i} \hat{\theta} \otimes \hat{\Lambda}_{y}} e^{-\mathrm{i} \hat{\gamma} \otimes \hat{\Lambda}_{z}}
$$

where $\overrightarrow{\hat{\Lambda}}=\sum_{\mu \nu} b_{k \lambda \mu}^{\dagger} \vec{\sigma}_{\mu \nu} b_{k \lambda \nu}$ is the angular momentum of the bosons.

The \hat{S} transformation takes us to the molecular frame.

Canonical transformation

Bosons: laboratory frame (x, y, z)
Molecules: rotating frame $\left(x^{\prime}, y^{\prime}, z^{\prime}\right)$ defined by the Euler angles ($\hat{\phi}, \hat{\theta}, \hat{\gamma}$).

$$
\hat{S}=e^{-\mathrm{i} \hat{\phi} \otimes \hat{\Lambda}_{z}} e^{-\mathrm{i} \hat{\theta} \otimes \hat{\Lambda}_{y}} e^{-\mathrm{i} \hat{\gamma} \otimes \hat{\Lambda}_{z}}
$$

where $\overrightarrow{\hat{\Lambda}}=\sum_{\mu \nu} b_{k \lambda \mu}^{\dagger} \vec{\sigma}_{\mu \nu} b_{k \lambda \nu}$ is the angular momentum of the bosons.

The \hat{S} transformation takes us to the molecular frame.

- Macroscopic deformation of the bath, exciting an infinite number of bosons (cf. Lee-Low-Pines for the polaron).
- Simplifies angular momentum algebra.
- Hamiltonian diagonalizable through a coherent state transformation in the $B \rightarrow 0$ limit. An expansion in bath excitations is a strong coupling expansion.

Canonical transformation

Bosons: laboratory frame (x, y, z)
Molecules: rotating frame $\left(x^{\prime}, y^{\prime}, z^{\prime}\right)$ defined by the Euler angles ($\hat{\phi}, \hat{\theta}, \hat{\gamma}$).

$$
\hat{S}=e^{-\mathrm{i} \hat{\phi} \otimes \hat{\Lambda}_{z}} e^{-\mathrm{i} \hat{\theta} \otimes \hat{\Lambda}_{y}} e^{-\mathrm{i} \hat{\gamma} \otimes \hat{\Lambda}_{z}}
$$

where $\overrightarrow{\hat{\Lambda}}=\sum_{\mu \nu} b_{k \lambda \mu}^{\dagger} \vec{\sigma}_{\mu \nu} b_{k \lambda \nu}$ is the
 angular momentum of tha b -
\checkmark Strong coupling

- Macrosc - Out-of-equilibrium dynamics (cf. Lee-L Finite temperature ($B \sim k_{B} T$)
- Simplifie - Finite temperature $\left(B \sim k_{B} T\right)$
- Hamilton $B \rightarrow 0$ limit. An expansion in bath excitations is a strong coupling expansion.

Dynamics: time-dependent variational Ansatz

We use a time-dependent variational Ansatz:

$$
|\psi\rangle=g_{L M}(t)|0\rangle_{\text {bos }}|L M 0\rangle+\sum_{k \lambda n} \alpha_{k \lambda n}^{L M}(t) b_{k \lambda n}^{\dagger}|0\rangle_{\text {bos }}|L M n\rangle
$$

Lagrangian on the variational manifold defined by $|\psi\rangle$:

$$
\mathcal{L}_{T=0}=\langle\psi| i \partial_{t}-\hat{\mathcal{H}}|\psi\rangle
$$

Euler-Lagrange equations of motion:

$$
\frac{d}{d t} \frac{\partial \mathcal{L}}{\partial \dot{x}_{i}}-\frac{\partial \mathcal{L}}{\partial x_{i}}=0
$$

where $x_{i}=\left\{g_{L M}, \alpha_{k \lambda n}^{L M}\right\}$.

$$
\left\{\begin{array}{l}
\dot{g}_{L M}(t)=\ldots \\
\dot{\alpha}_{k \lambda n}^{L M}(t)=\ldots
\end{array}\right.
$$

Dynamics: time-dependent variational Ansatz

We use a time-dependent variational Ansatz:

$$
|\psi\rangle=g_{L M}(t)|0\rangle_{\text {bos }}|L M 0\rangle+\sum_{k \lambda n} \alpha_{k \lambda n}^{L M}(t) b_{k \lambda n}^{\dagger}|0\rangle_{\text {bos }}|L M n\rangle
$$

Lagrangian on the variational manifold defined by $|\psi\rangle$:

$$
\mathcal{L}_{T=0}=\langle\psi| i \partial_{t}-\hat{\mathcal{H}}|\psi\rangle
$$

Euler-Lagrange equations of motion:

$$
\frac{d}{d t} \frac{\partial \mathcal{L}}{\partial \dot{x}_{i}}-\frac{\partial \mathcal{L}}{\partial x_{i}}=0
$$

where $x_{i}=\left\{g_{L M}, \alpha_{k \lambda n}^{L M}\right\}$.

$$
\left\{\begin{array}{l}
\dot{g}_{L M}(t)=\ldots \\
\dot{\alpha}_{k \lambda n}^{L M}(t)=\ldots
\end{array}\right.
$$

\checkmark Strong coupling
\checkmark Out-of-equilibrium dynamics

- Finite temperature ($B \sim k_{B} T$)

$$
\text { - Finite temperature }\left(B \sim k_{B} T\right)
$$

Dynamics: time-dependent variational Ansatz

We use a time-dependent variational Ansatz:

$$
|\psi\rangle=g_{L M}(t)|0\rangle_{\text {bos }}|L M 0\rangle+\sum_{k \lambda n} \alpha_{k \lambda n}^{L M}(t) b_{k \lambda n}^{\dagger}|0\rangle_{\text {bos }}|L M n\rangle
$$

Lagrangian on the variational manifold defined by $|\psi\rangle$:

$$
\mathcal{L}_{T=0}=\langle\psi| i \partial_{t}-\hat{\mathcal{H}}|\psi\rangle
$$

Euler-Lagrange equations of motion:

$$
\frac{d}{d t} \frac{\partial \mathcal{L}}{\partial \dot{x}_{i}}-\frac{\partial \mathcal{L}}{\partial x_{i}}=0
$$

where $x_{i}=\left\{g_{L M}, \alpha_{k \lambda n}^{L M}\right\}$.

$$
\left\{\begin{array}{l}
\dot{g}_{L M}(t)=\ldots \\
\dot{\alpha}_{k \lambda n}^{L M}(t)=\ldots
\end{array}\right.
$$

\checkmark Strong coupling
\checkmark Out-of-equilibrium dynamics Finite temperature $\left(B \sim k_{B} T\right)$

Theory vs. experiments: I_{2}

Comparison of the theory with preliminary experimental data from Stapelfeldt group, Aarhus University, for different molecules: I_{2}.

Theory vs. experiments: I_{2}

> Comparison of the theory with preliminary experimental data from Stapelfeldt group, Aarhus University, for different molecules: I_{2}.

Which rotational states are populated as the laser is switched on, and after?

Theory vs. experiments: I_{2}

Theory vs. experiments: I_{2}

Theory vs. experiments: I_{2}

Comparison of the theory with preliminary experimental data from Stapelfeldt group, Aarhus University, for different molecules: I_{2}.

$\left\langle\cos ^{2} \hat{\theta}_{2 \mathrm{D}}\right\rangle(t)$

Laser fluence F measured in $\mathrm{J} / \mathrm{cm}^{2}$

Theory vs. experiments: $C S_{2}$

Comparison of the theory with preliminary experimental data from Stapelfeldt group, Aarhus University, for different molecules: CS_{2}.

Theory vs. experiments: OCS

Comparison of the theory with preliminary experimental data from Stapelfeldt group, Aarhus University, for different molecules: OCS.

Conclusions

- The angulon quasiparticle: a quantum rotor dressed by a field of many-body excitations.
- Diagrammatic approach to angular momentum in a many-body context.
- Canonical transformation and finite-temperature variational Ansatz.
- Out-of-equilibrium dynamics of molecules in He nanodroplets can be interpreted in terms of angulons.

Lemeshko group @ IST Austria:

Institute of Science and Technology

Enderalp Yakaboylu

Misha
Lemeshko

Dynamical alignment experiments

Collaborators:

Henrik
Stapelfeldt (Aarhus)

Thank you for your attention.

FШF

Der Wissenschaftsfonds.

This work was supported by the Austrian Science Fund (FWF), project Nr.
P29902-N27.

Backup slide \# 1

Free rotor propagator

$$
G_{0, \lambda}(E)=\frac{1}{E-B \lambda(\lambda+1)+\mathrm{i} \delta}
$$

Interaction propagator

$$
\chi_{\lambda}(E)=\sum_{k} \frac{\left|U_{\lambda}(k)\right|^{2}}{E-\omega_{k}+\mathrm{i} \delta}
$$

Backup slide \# 2

Backup slide \# 3

[^0]: ${ }^{1}$ N. V. Prokof'ev and B. V. Svistunov, Phys. Rev. Lett. 81, 2514 (1998).
 ${ }^{2}$ GB, T.V. Tscherbul, M. Lemeshko, Phys. Rev. Lett. 121, 165301 (2018).

