Rotational coherence spectroscopy and far-from-equilibrium dynamics of molecules in ${ }^{4} \mathrm{He}$ nanodroplets

Giacomo Bighin
Institute of Science and Technology Austria

Superfluctuations 2020 - June 23rd, 2020

Quantum impurities

One particle (or a few particles) interacting with a many-body environment.

- Condensed matter
- Chemistry
- Ultracold atoms: tunable interaction with either bosons or fermions.

A prototype of a many-body system.

How are the properties of the impurity particle modified by the interaction?

Quantum impurities

Structureless impurity: translational degrees of freedom/linear momentum exchange with the bath.

Most common cases: electron in a solid, atomic impurities in a BEC.

Quantum impurities

Structureless impurity: translational degrees of freedom/linear momentum exchange with the bath.

Most common cases: electron in a solid, atomic impurities in a BEC.

Image from: F. Chevy, Physics 9, 86.

Quantum impurities

Structureless impurity: translational degrees of freedom/linear momentum exchange with the bath.

Most common cases: electron in a solid, atomic impurities in a BEC.

Image from: F. Chevy, Physics 9, 86.

Quantum impurities

Structureless impurity: translational degrees of freedom/linear momentum exchange with the bath.

Most common cases: electron in a solid, atomic impurities in a BEC.

Image from: F. Chevy, Physics 9, 86.

Composite impurity (e.g. a molecule): translational and rotational degrees of freedom/linear and angular momentum exchange.

Quantum impurities

Structureless impurity: translational degrees of freedom/linear momentum exchange with the bath.

Most common cases: electron in a solid, atomic impurities in a BEC.

Image from: F. Chevy, Physics 9, 86.

Molecules in helium nanodroplets

A molecular impurity embedded into a helium nanodroplet: a controllable system to explore angular momentum redistribution in a many-body environment.

Temperature $\sim 0.4 \mathrm{~K}$

Droplets are superfluid

Easy to produce

Molecules in helium nanodroplets

A molecular impurity embedded into a helium nanodroplet: a controllable system to explore angular momentum redistribution in a many-body environment.

Temperature $\sim 0.4 \mathrm{~K}$

Droplets are superfluid

Interaction of a linear molecule with an off-resonant linearlypolarized laser pulse:

$$
\hat{H}_{\text {laser }}=-\frac{1}{4} \Delta \alpha E^{2}(t) \cos ^{2} \hat{\theta}
$$

Only rotational degrees of freedom

Image from: S. Grebenev et al., Science 279, 2083 (1998).

Rotational spectrum of molecules in He nanodroplets

Molecules embedded into helium nanodroplets: rotational spectrum
-

Images from: J. P. Toennies and A. F. Vilesov, Angew. Chem. Int. Ed. 43, 2622 (2004).

Rotational spectrum of molecules in He nanodroplets

Molecules embedded into helium nanodroplets: rotational spectrum

Images from: J. P. Toennies and A. F. Vilesov, Angew. Chem. Int. Ed. 43, 2622 (2004).

Rotational spectrum of molecules in He nanodroplets

Molecules embedded into helium nanodroplets: rotational spectrum

Images from: J. P. Toennies and A. F. Vilesov, Angew. Chem. Int. Ed. 43, 2622 (2004).

Dynamical alignment of molecules in He nanodroplets

Dynamical alignment experiments (Stapelfeldt group, Aarhus University):

- Kick pulse, aligning the molecule.
- Probe pulse, destroying the molecule.
- Fragments are imaged, reconstructing alignment as a function of time.
- Averaging over multiple realizations, and varying the time between the two pulses, one gets

$$
\left\langle\cos ^{2} \hat{\theta}_{2 \mathrm{D}}\right\rangle(t)
$$

with:

$$
\cos ^{2} \hat{\theta}_{2 \mathrm{D}} \equiv \frac{\cos ^{2} \hat{\theta}}{\cos ^{2} \hat{\theta}+\sin ^{2} \hat{\theta} \sin ^{2} \hat{\phi}}
$$

Image from: B. Shepperson et al., Phys. Rev. Lett. 118, 203203 (2017).

Dynamical alignment of molecules in He nanodroplets

Dynamics of gas phase (free) I_{2}
molecules

Experiment: Stapelfeldt group (Aarhus University).
Dynamics of I_{2} molecules in helium

Effect of the environment is substantial:

- The peak of prompt alignment doesn't change its shape as the fluence $F=\int d t l(t)$ is changed.
- The revival structure differs from the gas-phase: revivals with a 50 ps period of unknown origin.
- The oscillations appear weaker at higher fluences.
- An intriguing puzzle: not even a qualitative understanding. Monte Carlo? He-DFT?

Quasiparticle approach

The quantum mechanical treatment of many-body systems is always challenging. How can one simplify the quantum impurity problem?

Quasiparticle approach

The quantum mechanical treatment of many-body systems is always challenging. How can one simplify the quantum impurity problem?

Polaron: an electron dressed by a field of many-body excitations.

Image from: F. Chevy, Physics 9, 86.

Angulon: a quantum rotor dressed by a field of many-body excitations.

R. Schmidt and M. Lemeshko, Phys. Rev. Lett. 114, 203001 (2015).
R. Schmidt and M. Lemeshko, Phys. Rev. X 6, 011012 (2016).

Yu. Shchadilova, "Viewpoint: A New Angle on Quantum Impurities", Physics 10, 20 (2017).

The Hamiltonian

A rotating linear molecule interacting with a bosonic bath can be described in the frame co-rotating with the molecule by the following Hamiltonian:

$$
\hat{\mathcal{H}}=B(\widehat{\mathbf{L}}-\hat{\Lambda})^{2}+\sum_{k \lambda \mu} \omega_{k} \hat{b}_{k \lambda \mu}^{\dagger} \hat{b}_{k \lambda \mu}+\sum_{k \lambda} v_{k \lambda}\left(\hat{b}_{k \lambda 0}^{\dagger}+\hat{b}_{k \lambda 0}\right),
$$

Notation:

- $\widehat{\mathbf{L}}$ the total angular-momentum operator of the combined system, consisting of a molecule and helium excitations.
- $\hat{\Lambda}$ is the angular-momentum operator for the bosonic helium bath, whose excitations are described by $\hat{b}_{k \lambda \mu} / \hat{b}_{k \lambda \mu}^{\dagger}$ operators.
- $k \lambda \mu$: angular momentum basis. k the magnitude of linear momentum of the boson, λ its angular momentum, and μ the z-axis angular momentum projection.
- ω_{k} gives the dispersion relation of superfluid helium.
- $V_{k \lambda}$ encodes the details of the molecule-helium interactions.

The Hamiltonian

A rotating linear molecule interacting with a bosonic bath can be described in the frame co-rotating with the molecule by the following Hamiltonian:

$$
\hat{\mathcal{H}}=B(\widehat{\mathbf{L}}-\hat{\Lambda})^{2}+\sum_{k \lambda \mu} \omega_{k} \hat{b}_{k \lambda \mu}^{\dagger} \hat{b}_{k \lambda \mu}+\sum_{k \lambda} v_{k \lambda}\left(\hat{b}_{k \lambda 0}^{\dagger}+\hat{b}_{k \lambda 0}\right),
$$

Notation:

- $\widehat{\mathbf{L}}$ the total angular-momentdm operator of the combined system, consisting of a molecule and heljum excitations.
- $\hat{\Lambda}$ is the angular-momentum operaty for the bosonic helium bath, whose excitations are described by $\hat{b}_{k \lambda \mu} / \hat{b}_{k \lambda \mu}^{\dagger}$ Okerators.
- $k \lambda \mu$: angular momentum basis. k the magnitude of linear momentum of Compare with the Lee-Low-Pines Hamiltonian ingular momentum

$$
\hat{H}_{\mathrm{LLP}}=\frac{\left(\mathbf{P}-\sum_{\mathbf{k}} \mathbf{k} \hat{b}_{\mathbf{k}}^{\dagger} \hat{b}_{\mathbf{k}}\right)^{2}}{2 m_{l}}+\sum_{\mathbf{k}} \omega_{\mathbf{k}} \hat{b}_{\mathbf{k}}^{\dagger} \hat{b}_{\mathbf{k}}+\frac{g}{\mathcal{V}} \sum_{\mathbf{k}, \mathbf{k}^{\prime}} \hat{b}_{\mathbf{k}^{\prime}}^{\dagger} \hat{b}_{\mathbf{k}^{\prime}} \text { tions. }
$$

Dynamics: time-dependent variational Ansatz

We describe dynamics using a time-dependent variational Ansatz, including excitations up to one phonon:

$$
\left|\psi_{L M}(t)\right\rangle=\hat{U}\left(g_{L M}(t)|0\rangle_{\text {bos }}|L M 0\rangle+\sum_{k \lambda n} \alpha_{k \lambda n}^{L M}(t) b_{k \lambda n}^{\dagger}|0\rangle_{\text {bos }}|L M n\rangle\right)
$$

Lagrangian on the variational manifold defined by $\left|\psi_{L M}\right\rangle$:

$$
\mathcal{L}=\left\langle\psi_{L M}\right| i \partial_{t}-\hat{\mathcal{H}}\left|\psi_{L M}\right\rangle
$$

Euler-Lagrange equations of motion:

$$
\frac{d}{d t} \frac{\partial \mathcal{L}}{\partial \dot{x}_{i}}-\frac{\partial \mathcal{L}}{\partial x_{i}}=0
$$

where $x_{i}=\left\{g_{L M}, \alpha_{k \lambda n}^{L M}\right\}$. We obtain a differential system

$$
\left\{\begin{array}{l}
\dot{g}_{L M}(t)=\ldots \\
\dot{\alpha}_{k \lambda n}^{L M}(t)=\ldots
\end{array}\right.
$$

to be solved numerically; in $\alpha_{k \lambda \mu}$ the momentum k needs to be discretized.

Theory vs. experiments: I_{2}

Comparison with experimental data from Stapelfeldt group, Aarhus University, for different molecules: I_{2}.
I_{2} in helium droplets

Generally good agreement for the main features in experimental data:

- Oscillations with a period of 50 ps , growing in amplitude as the laser fluence is increased.
- Oscillations decay: at most 4 periods are visible.
- The width of the first peak does not change much with fluence.
-_ Experiment
-_ Angulon theory

Theory vs. experiments: CS_{2}

CS_{2} in helium droplets

Comparison with experimental data from Stapelfeldt group, Aarhus University, for different molecules: CS_{2}.

- Again, a persistent oscillatory pattern.
- For higher values of the fluence the oscillatory pattern disappears.
—— Experiment Laser pulse
- Angulon theory

Experiments vs. theory: spectrum

The Fourier transform of the measured alignment cosine $\left\langle\cos ^{2} \hat{\theta}_{2 D}\right\rangle(t)$ is dominated by $(L) \leftrightarrow(L+2)$ interferences. How is it affected when the level structure changes?

$$
E_{L+2}-E_{L}
$$

Experiments vs. theory: spectrum

The Fourier transform of the measured alignment cosine $\left\langle\cos ^{2} \hat{\theta}_{2 D}\right\rangle(t)$ is dominated by $(L) \leftrightarrow(L+2)$ interferences. How is it affected when the level structure changes? 20 Ghz corresponds to 50ps

$$
E_{L+2}-E_{L}
$$

Many-body dynamics of angular momentum

How long does it take for a molecule to equilibrate with the helium environment and form an angulon quasiparticle? This requires tens of ps ; which is also the timescale of the laser!

Approach to equilibrium of the quasiparticle weight $\left|g_{L M}\right|^{2}$ and of the phonon populations $\sum_{k}\left|\alpha_{k \lambda \mu}\right|^{2}$.

Many-body dynamics of angular momentum

With a shorter 450 fs pulse, same molecule $\left(\mathrm{I}_{2}\right)$, the strong oscillatory pattern is absent:

Image from: B. Shepperson et al., Phys. Rev. Lett. 118, 203203 (2017).

Conclusions

- A novel kind of pump-probe spectroscopy, based on impulsive molecular alignment in the laboratory frame, providing access to the structure of highly excited rotational states.
- Our theoretical model allows us to interpret this behavior in terms of the dynamics of angulon quasiparticles, shedding light onto many-particle dynamics of angular momentum at femtosecond timescales.
- Future perspectives:
- All molecular geometries (spherical tops, asymmetric tops).
- Optical centrifuges and superrotors.
- Can a rotating molecule create a vortex?
- For more details: arXiv:1906.12238. See also A.S. Chatterley, L. Christiansen, C.A. Schouder, A.V. Jørgensen, B. Shepperson, I.N. Cherepanov, GB, R.E. Zillich, M. Lemeshko, H. Stapelfeldt, "Rotational coherence spectroscopy of molecules in helium nanodroplets: Reconciling the time and the frequency domains", Phys. Rev. Lett., in press.

Lemeshko group @ IST Austria:

$\mathrm{I}_{\mathrm{I}}^{\mathrm{s} \mid \mathrm{T}}$ austria

Institute of Science and Technology

Dynamical alignment experiments

Collaborators:

Henrik
Stapelfeldt (Aarhus)

Richard Schmidt (MPQ

Timur Tscherbul 16/17 (Reno)

Thank you for your attention.

FШF

Der Wissenschaftsfonds.

This work was supported by a Lise Meitner Fellowship of the Austrian Science Fund (FWF), project Nr.
M2461-N27.

Backup slide \# 1: finite-temperature dynamics

For the impurity: average over a statistical ensamble, weights $\propto \exp \left(-\beta E_{L}\right)$.
For the bath: the zero-temperature bosonic expectation values in \mathcal{L} are converted to finite temperature ones ${ }^{1,2}$.

$$
\mathcal{L}_{T=0}=\langle 0| \hat{O}^{\dagger}\left(\mathrm{i} \partial_{t}-\hat{\mathcal{H}}\right) \hat{O}|0\rangle_{\text {bos }} \longrightarrow \mathcal{L}_{T}=\operatorname{Tr}\left[\rho_{0} \hat{O}^{\dagger}\left(\mathrm{i} \partial_{t}-\hat{\mathcal{H}}\right) \hat{O}\right]
$$

[1] A. R. DeAngelis and G. Gatoff, Phys. Rev. C 43, 2747 (1991).
[2] W.E. Liu, J. Levinsen, M. M. Parish, "Variational approach for impurity dynamics at finite temperature", arXiv:1805.10013

Backup slide \# 1: finite-temperature dynamics

For the impurity: average over a statistical ensamble, weights $\propto \exp \left(-\beta E_{L}\right)$.
For the bath: the zero-temperature bosonic expectation values in \mathcal{L} are converted to finite temperature ones ${ }^{1,2}$.

$$
\mathcal{L}_{T=0}=\langle 0| \hat{O}^{\dagger}\left(\mathrm{i} \partial_{t}-\hat{\mathcal{H}}\right) \hat{O}|0\rangle_{\text {bos }} \longrightarrow \mathcal{L}_{T}=\operatorname{Tr}\left[\rho_{0} \hat{O}^{\dagger}\left(\mathrm{i} \partial_{t}-\hat{\mathcal{H}}\right) \hat{O}\right]
$$

A couple of additional details:

- The laser changes the total angular momentum of the system. An appropriate wavefunction is then $|\Psi\rangle=\sum_{L M}\left|\psi_{L M}\right\rangle$
- Focal averaging, accounting for the fact that the laser is not always perfectly focused.
- States with odd/even angular momenta may have different abundances, due to the nuclear spin.
[1] A. R. DeAngelis and G. Gatoff, Phys. Rev. C 43, 2747 (1991).
[2] W.E. Liu, J. Levinsen, M. M. Parish, "Variational approach for impurity dynamics at finite temperature", arXiv:1805.10013

Backup slide \# 2: the angulon

A composite impurity in a bosonic environment can be described by the angulon Hamiltonian ${ }^{1,2,3,4}$ (angular momentum basis: $\mathbf{k} \rightarrow\{k, \lambda, \mu\}$):

$$
\hat{H}=\underbrace{B \hat{J}^{2}}_{\text {molecule }}+\underbrace{\sum_{k \lambda \mu} \omega_{k} \hat{b}_{k \lambda \mu}^{\dagger} \hat{b}_{k \lambda \mu}}_{\text {phonons }}+\underbrace{\sum_{k \lambda \mu} U_{\lambda}(k)\left[\gamma_{\lambda \mu}^{*}(\hat{\theta}, \hat{\phi}) \hat{b}_{k \lambda \mu}^{\dagger}+Y_{\lambda \mu}(\hat{\theta}, \hat{\phi}) \hat{b}_{k \lambda \mu}\right]}_{\text {molecule-phonon interaction }}
$$

- Linear molecule.
- Derived rigorously for a molecule in a weakly-interacting BEC ${ }^{1}$.
- Phenomenological model for a molecule in any kind of bosonic bath ${ }^{3}$.
${ }^{1}$ R. Schmidt and M. Lemeshko, Phys. Rev. Lett. 114, 203001 (2015).
${ }^{2}$ R. Schmidt and M. Lemeshko, Phys. Rev. X 6, 011012 (2016).
${ }^{3}$ M. Lemeshko, Phys. Rev. Lett. 118, 095301 (2017).
${ }^{4}$ Yu. Shchadilova, "Viewpoint: A New Angle on Quantum Impurities", Physics 10, 20 (2017).

Backup slide \# 2: the angulon

A composite impurity in a bosonic environment can be described by the angulon Hamiltonian ${ }^{1,2,3,4}$ (angular momentum basis: $\mathbf{k} \rightarrow\{k, \lambda, \mu\}$):

${ }^{1}$ R. Schmidt and M. Lemeshko, Phys. Rev. Lett. 114, 203001 (2015).
${ }^{2}$ R. Schmidt and M. Lemeshko, Phys. Rev. X 6, 011012 (2016).
${ }^{3}$ M. Lemeshko, Phys. Rev. Lett. 118, 095301 (2017).
${ }^{4}$ Yu. Shchadilova, "Viewpoint: A New Angle on Quantum Impurities", Physics 10, 20 (2017).

Backup slide \# 3: canonical transformation

We apply a canonical transformation

$$
\hat{S}=e^{-\mathrm{i} \hat{\phi} \otimes \hat{\Lambda}_{z}} e^{-\mathrm{i} \hat{\theta} \otimes \hat{\Lambda}_{y}} e^{-\mathrm{i} \hat{\gamma} \otimes \hat{\Lambda}_{z}}
$$

where $\hat{\Lambda}=\sum_{\mu \nu} b_{k \lambda \mu}^{\dagger} \vec{\sigma}_{\mu \nu} b_{k \lambda \nu}$ is the angular momentum of the bosons.

Cfr. the Lee-Low-Pines transformation for the polaron.

Bosons: laboratory frame (x, y, z) Molecule: rotating frame ($x^{\prime}, y^{\prime}, z^{\prime}$) defined by the Euler angles ($\hat{\phi}, \hat{\theta}, \hat{\gamma}$).

rotating frame

