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Impurity problems

Definition: one (or a few particles)
interacting with a many-body
environment.

How are the properties of the
particle modified by the interaction?

O(1023) degrees of freedom.
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Building blocks for understanding strongly correlated systems.



Condensed matter (electrons in solids)



Chemistry (molecules in a solution)



Ultracold atoms (atomic impurities in a BEC)



From impurities to quasiparticles

Structureless impurity: translational
degrees of freedom/linear momentum
exchange with the bath.

Most common cases: electron in a solid,
atomic impurities in a BEC.

Image from: F. Chevy, Physics 9, 86.

Composite impurity: translational and internal
(i.e. rotational) degrees of freedom/linear and
angular momentum exchange.
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This scenario can be formalized in terms of
quasiparticles using the polaron and the Fröh-
lich Hamiltonian.
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This scenario can be formalized in terms of
quasiparticles using the polaron and the Fröh-
lich Hamiltonian.

What about a rotating particle? Can there be a
rotating counterpart of the polaron quasiparti-
cle? The main difficulty: the non-Abelian SO(3)
algebra describing rotations.



The angulon

A composite impurity in a bosonic environment can be described by the
angulon Hamiltonian1,2,3,4 (angular momentum basis: k → {k, λ, µ}):

Ĥ = BĴ2︸︷︷︸
molecule

+
∑
kλµ

ωkb̂
†
kλµb̂kλµ︸ ︷︷ ︸

phonons

+
∑
kλµ

Uλ(k)
[
Y∗λµ(θ̂, ϕ̂)b̂

†
kλµ + Yλµ(θ̂, ϕ̂)b̂kλµ

]
︸ ︷︷ ︸

molecule-phonon interaction

• Linear molecule.

• Derived rigorously for a molecule in a
weakly-interacting BEC1.

• Phenomenological model for a
molecule in any kind of bosonic
bath3.

1R. Schmidt and M. Lemeshko, Phys. Rev. Lett. 114, 203001 (2015).
2R. Schmidt and M. Lemeshko, Phys. Rev. X 6, 011012 (2016).
3M. Lemeshko, Phys. Rev. Lett. 118, 095301 (2017).
4Y. Shchadilova, ”Viewpoint: A New Angle on Quantum Impurities”, Physics 10, 20 (2017). 4/29



Definire a voce tutte le quantità.
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molecule-phonon interaction

• Linear molecule.

• Derived rigorously for a molecule in a
weakly-interacting BEC1.

• Phenomenological model for a
molecule in any kind of bosonic
bath3.

λ = 0: spherically
symmetric part.
λ ≥ 1 anisotropic
part.

1R. Schmidt and M. Lemeshko, Phys. Rev. Lett. 114, 203001 (2015).
2R. Schmidt and M. Lemeshko, Phys. Rev. X 6, 011012 (2016).
3M. Lemeshko, Phys. Rev. Lett. 118, 095301 (2017).
4Y. Shchadilova, ”Viewpoint: A New Angle on Quantum Impurities”, Physics 10, 20 (2017).
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Composite impurities: where to find them

Strongmotivation for the study of composite impurities comes frommany
different fields. Composite impurities are realized as:

• Molecules embedded into
helium nanodroplets.

• Ultracold molecules and ions.

• Rotating molecules inside a
‘cage’ in perovskites.

• Angular momentum transfer
from the electrons to a crystal
lattice.

Image from: J. P. Toennies and A. F. Vilesov, Angew. Chem.
Int. Ed. 43, 2622 (2004).
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5/29



Composite impurities: where to find them

Strongmotivation for the study of composite impurities comes frommany
different fields. Composite impurities are realized as:

• Molecules embedded into
helium nanodroplets.

• Ultracold molecules and ions.

• Rotating molecules inside a
‘cage’ in perovskites.

• Angular momentum transfer
from the electrons to a crystal
lattice.

T. Chen et al., PNAS 114, 7519 (2017).
J. Lahnsteiner et al., Phys. Rev. B 94, 214114 (2016).
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First part: angular momentum and Feynman
diagrams.
Second part: out-of-equilibrium dynamics of
molecules in He nanodroplets.



Angular momentum and Feynman
diagrams



Perturbative approach and Feynman diagrams

Back to the angulon Hamiltonian:

Ĥ = BĴ2︸︷︷︸
molecule

+
∑
kλµ

ωkb̂
†
kλµb̂kλµ︸ ︷︷ ︸

phonons

+
∑
kλµ

Uλ(k)
[
Y∗λµ(θ̂, ϕ̂)b̂

†
kλµ + Yλµ(θ̂, ϕ̂)b̂kλµ

]
︸ ︷︷ ︸

molecule-phonon interaction

Perturbation theory/Feynman diagrams:
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How does angular momentum enter this picture?
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From path integral to Feynman rules

The path integral in QM describes the transition amplitude between two states
with a weighted average over all trajectories, S is the classical action.

G(xi, xf; tf − ti) = ⟨xf, tf|xi, ti⟩ =
∫
Dx eiS[x(t)]

Linear molecule, two
angles θ and ϕ.

G(θi, ϕi; θf, ϕf; T) =
∫

DθDϕ
∏
kλµ

Dbkλµ ei(Smol+Sbos+Smol-bos)

=

∫
DθDϕ eiSmol+iSint

=

∫
DθDϕ eiSmol(1+ iSint −

1
2
S2int + . . .) = G(0) + G(1) + G(2) + . . .

The result can be interpreted as a diagrammatic expansion, fromwhich one can
derive the Feynman rules for angular momentum.
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Order by order, in a systematic way.
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=

∫
DθDϕ eiSmol(1+ iSint −

1
2
S2int + . . .) = G(0) + G(1) + G(2) + . . .

The result can be interpreted as a diagrammatic expansion, fromwhich one can
derive the Feynman rules for angular momentum.

Open quantum systems: a quantum rotor with memory.

S =

∫ T

0
dt BJ2︸ ︷︷ ︸
Smol

+
i
2

∫ T

0
dt

∫ T

0
ds

∑
λ

Pλ(cos γ(t, s))Mλ(|t − s|)

︸ ︷︷ ︸
Sint
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G(0) + G(1) + G(2) + . . . =

+ +

+ + . . .



Order by order, in a systematic way.



Feynman rules

Each free propagator ∑
λiµi

(−1)µiG0,λiλi µi

Each phonon propagator ∑
λiµi

(−1)µiDλiλi µi

Each vertex

(−1)λi ⟨λi| |Y(λj)| |λk⟩

(
λi λj λk
µi µj µk

)

GB and M. Lemeshko, Phys. Rev. B 96, 419 (2017).

Usually momentum conservation is
enforced by an appropriate labeling.

Not the same for angular
momentum, j and λ couple to
|j− λ|, . . . , j+ λ.

∑
j′m′
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Feynman rules

Each free propagator ∑
λiµi

(−1)µiG0,λiλi µi

Each phonon propagator ∑
λiµi

(−1)µiDλiλi µi

Each vertex

(−1)λi ⟨λi| |Y(λj)| |λk⟩

(
λi λj λk
µi µj µk

)

GB and M. Lemeshko, Phys. Rev. B 96, 419 (2017).

Diagrammatic theory of angular momentum (developed in the context of
theoretical atomic spectroscopy)

from D. A. Varshalovich, A. N. Moskalev, V. K. Khersonskii, “Quantum Theory of Angular Momentum”.
8/29



Angulon spectral function

Let us use the Feynman diagrams! The plan is:

1. Self-energy (Σ)
2. Dyson equation to obtain the angulon Green’s function (G)
3. Spectral function (A)
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3. Spectral function (A)

First order: =

Equivalent to a simple, 1-phonon variational Ansatz (cf. Chevy Ansatz for the
polaron)

|ψ⟩ = Z1/2LM |0⟩ |LM⟩+
∑
kλµ
jm

βkλjCLM
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Angulon spectral function

Let us use the Feynman diagrams! The plan is:

1. Self-energy (Σ)
2. Dyson equation to obtain the angulon Green’s function (G)
3. Spectral function (A)

First order: =

Equivalent to a simple, 1-phonon variational Ansatz (cf. Chevy Ansatz for the
polaron)

|ψ⟩ = Z1/2LM |0⟩ |LM⟩+
∑
kλµ
jm

βkλjCLM
jm,λµb

†
kλµ |0⟩ |jm⟩

Quasiparticle
weight

|bath⟩ |molecule⟩
Variational coeffi-
cients

Clebsch-Gordan
to couple angular
momenta
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Angulon spectral function

Let us use the Feynman diagrams! The plan is:

1. Self-energy (Σ)
2. Dyson equation to obtain the angulon Green’s function (G)
3. Spectral function (A)

Second order: = +
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Angulon spectral function

Let us use the Feynman diagrams! The plan is:

1. Self-energy (Σ)
2. Dyson equation to obtain the angulon Green’s function (G)
3. Spectral function (A)

Dyson equation

angulon quantum
rotor

many-body field
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Angulon spectral function

Let us use the Feynman diagrams! The plan is:

1. Self-energy (Σ)
2. Dyson equation to obtain the angulon Green’s function (G)
3. Spectral function (A)

Finally the spectral function allows for a study the whole excitation spectrum of
the system:

Aλ(E) = − 1
π
ImGλ(E+ i0+)
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Angulon quasiparticle spectrum

Angulon quasiparticle spectrum as a function of the bath density:
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The density of the bath.



Angulon quasiparticle spectrum

Angulon quasiparticle spectrum as a function of the bath density:

1

2

3 3
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The density of the bath.



Angulon quasiparticle spectrum: low density

Low density: free rotor spec-
trum, E = BL(L+ 1).

Many-body-induced fine
structure1: upper phonon
wing (one phonon with
λ = 0, isotropic interaction).

[1] R. Schmidt and M. Lemeshko, Phys. Rev. Lett.
114, 203001 (2015).
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The appearance of the ``phonon'' state can be understood as a resonance in the many-body...



spectrum emerging due to coupling between the molecule and phonon states outside of the scattering continuum.



Angulon quasiparticle spectrum: instability

Intermediate region: angulon
instability. Many body reso-
nance, corresponding to the
emission of a phonon with
λ = 1 (due to anisotropic in-
teraction).

Experimental observation: I. N. Cherepanov, M.
Lemeshko, “Fingerprints of angulon instabilities in
the spectra of matrix-isolatedmolecules”, Phys. Rev.
Materials 1, 035602 (2017.
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Angulon quasiparticle spectrum: high density

High density: the two-loop corrections start to be relevant.

13/29



What about higher orders?

= + +

+ + . . .+ +

+ . . .+ + . . .

Diagrammatic Monte Carlo:1 a stochastic process sampling among all diagrams.

Up to now: structureless particles (Fröhlich polaron, Holstein polaron), or
particles with a very simple internal structure (e.g. spin 1/2).

What about molecules2?
1N. V. Prokof’ev and B. V. Svistunov, Phys. Rev. Lett. 81, 2514 (1998).
2GB, T.V. Tscherbul, M. Lemeshko, arXiv:1803:07990
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A lot to gain from connecting DiagMC and the theory of molecular simulations.



Diagrammatics for a rotating impurity

Moving particle: linear momentum
circulating on lines.

Rotating particle: angular momentum
circulating on lines.

It gets weirder... Down the rabbit hole of angular momentum composition!
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Diagrammatics for a rotating impurity

Moving particle: linear momentum
circulating on lines.

Rotating particle: angular momentum
circulating on lines.

It gets weirder... Down the rabbit hole of angular momentum composition!

k⃗ and q⃗ fully deter-
mine k⃗− q⃗

j and λ can sum
in many different
ways: |j−λ|, . . . j+λ
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Diagrammatics for a rotating impurity

Moving particle: linear momentum
circulating on lines.

Rotating particle: angular momentum
circulating on lines.

It gets weirder... Down the rabbit hole of angular momentum composition!

The phonon takes
away q⃗1 momen-
tum... ...and gives back q⃗1

momentum

The phonon does
not subtract an-
gular momentum
from the impurity...

...but gives back
two quanta!
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Diagrammatics for a rotating impurity

Moving particle: linear momentum
circulating on lines.

Rotating particle: angular momentum
circulating on lines.

It gets weirder... Down the rabbit hole of angular momentum composition!

15/29

The configuration space is more complex... and
bigger! We need different updates.



DiagMC: results

The ground-state energy of the angulon Hamiltonian obtained using DiagMC1 as
a function of the dimensionless bath density, ñ, in comparison with the
weak-coupling theory2 and the strong-coupling theory3.

The energy is obtained by
fitting the
long-imaginary-time
behaviour of Gj with
Gj(τ) = Zj exp(−Ej τ).

Inset: energy of the L = 0, 1, 2
states.

1GB, T.V. Tscherbul, M. Lemeshko, arXiv:1803:07990.
2R. Schmidt and M. Lemeshko, Phys. Rev. Lett. 114, 203001 (2015).
3R. Schmidt and M. Lemeshko, Phys. Rev. X 6, 011012 (2016).
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Out-of-equilibrium dynamics of
molecules in He nanodroplets



Dynamical alignment of molecules in He nanodroplets

Molecules embedded into helium nanodroplets:

Gas phase
(free)

in 4He

Images from: J. P. Toennies and A. F. Vilesov, Angew. Chem. Int. Ed. 43, 2622 (2004).
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Dynamical alignment of molecules in He nanodroplets

Molecules embedded into helium nanodroplets:

Gas phase
(free)

in 4He

Images from: J. P. Toennies and A. F. Vilesov, Angew. Chem. Int. Ed. 43, 2622 (2004).
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Dynamical alignment of molecules in He nanodroplets

Molecules embedded into helium nanodroplets:

Gas phase
(free)

in 4He

Images from: J. P. Toennies and A. F. Vilesov, Angew. Chem. Int. Ed. 43, 2622 (2004).

Rotational spec-
trum

Renormalizated
lines (smaller effec-
tive B)
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Dynamical alignment of molecules in He nanodroplets

Dynamical alignment experiments:

• Kick pulse, aligning the molecule.

• Probe pulse, destroying the molecule.

• Fragments are imaged, reconstructing
alignment as a function of time.

• Averaging over multiple realizations,
and varying the time between the two
pulses, one gets⟨

cos2 θ̂2D
⟩
(t)

with:

cos2 θ̂2D ≡ cos2 θ̂

cos2 θ̂ + sin2 θ̂ sin2 ϕ̂
Image from B. Shepperson et al., Phys. Rev. Lett.
118, 203203 (2017).
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Dynamical alignment of molecules in He nanodroplets

Interaction of a free molecule with an off-resonant laser pulse

Ĥ = BĴ2 − 1
4
∆αE2(t) cos2 θ̂

When acting on a free molecule, the laser excites in a short timemany rotational
states (L ↔ L+ 2), creating a rotational wave packet:

G. Kaya, Appl. Phys. B 6, 122 (2016).

Movie 19/29



Define all the quantities



Dynamical alignment of molecules in He nanodroplets

Effect of the environment is substantial: freemolecule vs. samemolecule in He.

Stapelfeldt group, Phys. Rev. Lett. 110, 093002 (2013).

Not even a qualitative understanding. Monte Carlo? Challenges:

• Strong-coupling.
• Out-of-equilibrium dynamics.
• Finite temperature (B ∼ kBT).
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Canonical transformation

Bosons: laboratory frame (x, y, z)
Molecules: rotating frame (x′, y′, z′)
defined by the Euler angles (ϕ̂, θ̂, γ̂).

Ŝ = e−iϕ̂⊗Λ̂ze−iθ̂⊗Λ̂ye−iγ̂⊗Λ̂z

where ⃗̂Λ =
∑

µν b
†
kλµσ⃗µνbkλν is the

angular momentum of the bosons.
Introduced in: R. Schmidt and M. Lemeshko, Phys. Rev. X 6, 011012 (2016).

• Accounts for a macroscopic deformation of the bath, exciting an
infinite number of bosons.

• Simplifies angular momentum algebra.

• An expansion in bath excitations after Ŝ is a strong-coupling
expansion.
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Time-dependent variational Ansatz

After the canonical transformation Ŝ, we can use as time-dependent variational
Ansatz an expansion in bath excitations:

|ψ⟩ = gLM(t) |0⟩bos |LM0⟩+
∑
kλn

αkλn(t)b
†
kλn |0⟩bos |LMn⟩

Lagrangian:

LT=0 = ⟨ψ|i∂t − Ĥ|ψ⟩

Equations of motion:

d
dt
∂L
∂ẋi

− ∂L
∂xi

= 0

where xi = {gLM, αkλn}. {
ġLM(t) = . . .

α̇kλn(t) = . . .
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Equations of motion living on a manifold of Hilbert space.



Finite-temperature dynamics

For the impurity: average over a statistical ensamble, with weights
WL ∝ exp(−βEL).

For the bath: defining the ‘Chevy operator’

Ô = gLM(t) |LM0⟩1+
∑
kλn

αLM
kλn(t) |LMn⟩ b̂

†
kλn

at T = 0 the Lagrangian is

LT=0 = ⟨0|Ô†(i∂t − Ĥ)Ô|0⟩bos ,

suggesting that at finite temperature

LT = Tr
[
ρ0 Ô†(i∂t − Ĥ)Ô

]
where ρ0 is the density matrix for the medium.
[1] A. R. DeAngelis and G. Gatoff, Phys. Rev. C 43, 2747 (1991).
[2] W.E. Liu, J. Levinsen, M. M. Parish, “Variational approach for impurity dynamics at finite temperature”,
arXiv:1805.10013
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Theory vs. experiments: I2

Comparison of the theory with preliminary
experimental data from Stapelfeldt group, Aarhus
University, for different molecules: I2.

24/29



Theory vs. experiments: I2

Comparison of the theory with preliminary
experimental data from Stapelfeldt group, Aarhus
University, for different molecules: I2.

24/29



Theory vs. experiments: I2

Comparison of the theory with preliminary
experimental data from Stapelfeldt group, Aarhus
University, for different molecules: I2.

Which rotational states are
populated as the laser is switched
on, and after?

24/29



Theory vs. experiments: I2

Comparison of the theory with preliminary
experimental data from Stapelfeldt group, Aarhus
University, for different molecules: I2.

Which rotational states are
populated as the laser is switched
on, and after?

Free case: the angular momentum
goes to the molecule.
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Theory vs. experiments: I2

Comparison of the theory with preliminary
experimental data from Stapelfeldt group, Aarhus
University, for different molecules: I2.

⟨
cos2 θ̂2D

⟩
(t)

24/29



Theory vs. experiments: CS2
Comparison of the theory with preliminary
experimental data from Stapelfeldt group, Aarhus
University, for different molecules: CS2.

⟨
cos2 θ̂2D

⟩
(t)
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Theory vs. experiments: OCS

Comparison of the theory with preliminary
experimental data from Stapelfeldt group, Aarhus
University, for different molecules: OCS.

⟨
cos2 θ̂2D

⟩
(t)
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Conclusions

• The angulon quasiparticle: a quantum rotor dressed by a field of
many-body excitations.

• Angular momentum and Feynman diagrams.

• A technique for molecular simulations using the Diagrammatic Monte Carlo
framework.

• Out-of-equilibrium dynamics of molecules in He nanodroplets can be
interpreted in terms of angulons.
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Backup slide # 1

Free rotor propagator G0,λ(E) =
1

E− Bλ(λ+ 1) + iδ

Interaction propagator χλ(E) =
∑
k

|Uλ(k)|2

E− ωk + iδ



Backup slide # 2



Backup slide # 3
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