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Quantum impurities

One particle (or a few particles)
interacting with a many-body
environment.

• Condensedmatter

• Chemistry

• Ultracold atoms

How are the properties of the
particle modified by the interaction?

O(1023) degrees of freedom.
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Building blocks for understanding strongly correlated systems.



Condensed matter (electrons in solids)



Chemistry (molecules in a solution)



Ultracold atoms (atomic impurities in a BEC)



Quantum impurities

Structureless impurity: translational
degrees of freedom/linear momentum
exchange with the bath.

Most common cases: electron in a solid,
atomic impurities in a BEC.

Image from: F. Chevy, Physics 9, 86.

Composite impurity (e.g. a molecule):
translational and rotational degrees of
freedom/linear and angular momentum
exchange.

3/35



Quantum impurities

Structureless impurity: translational
degrees of freedom/linear momentum
exchange with the bath.

Most common cases: electron in a solid,
atomic impurities in a BEC.

Image from: F. Chevy, Physics 9, 86.

Composite impurity (e.g. a molecule):
translational and rotational degrees of
freedom/linear and angular momentum
exchange.

3/35



Quantum impurities

Structureless impurity: translational
degrees of freedom/linear momentum
exchange with the bath.

Most common cases: electron in a solid,
atomic impurities in a BEC.

Image from: F. Chevy, Physics 9, 86.

Composite impurity (e.g. a molecule):
translational and rotational degrees of
freedom/linear and angular momentum
exchange.

3/35



Quantum impurities

Structureless impurity: translational
degrees of freedom/linear momentum
exchange with the bath.

Most common cases: electron in a solid,
atomic impurities in a BEC.

Image from: F. Chevy, Physics 9, 86.

Composite impurity (e.g. a molecule):
translational and rotational degrees of
freedom/linear and angular momentum
exchange.

3/35



Quantum impurities

Structureless impurity: translational
degrees of freedom/linear momentum
exchange with the bath.

Most common cases: electron in a solid,
atomic impurities in a BEC.

Image from: F. Chevy, Physics 9, 86.

Composite impurity (e.g. a molecule):
translational and rotational degrees of
freedom/linear and angular momentum
exchange.

3/35

What about a rotating impurity? How can this
scenario be realized experimentally?



Composite impurities: where to find them

Strongmotivation for the study of composite impurities comes frommany
different fields. Composite impurities can be realized as:

• Ultracold molecules and ions.

• Rotating molecules inside a
‘cage’ in perovskites.

• Angular momentum transfer
from the electrons to a crystal
lattice.

• Molecules embedded into
helium nanodroplets.

B. Midya, M. Tomza, R. Schmidt, and M. Lemeshko, Phys.
Rev. A 94, 041601(R) (2016).
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Strongmotivation for the study of composite impurities comes frommany
different fields. Composite impurities can be realized as:

• Ultracold molecules and ions.

• Rotating molecules inside a
‘cage’ in perovskites.

• Angular momentum transfer
from the electrons to a crystal
lattice.

• Molecules embedded into
helium nanodroplets.

J.H. Mentink, M.I. Katsnelson, M. Lemeshko, “Quantum
many-body dynamics of the Einstein-de Haas effect”,
Phys. Rev. B 99, 064428 (2019).
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First part: out-of-equilibrium dynamics of
molecules in He nanodroplets.
Second part: angular momentum, Feynman
diagrams and Diagrammatic Monte Carlo.



Molecules in helium nanodroplets

Amolecular impurity embedded into a helium nanodroplet: a controllable
system to explore angular momentum redistribution in a many-body
environment.

Temperature∼ 0.4K

Droplets are
superfluid

Easy toproduce

Free of perturbations

Only rotational
degrees of freedom

Easy to manipulate
by a laser

Image from: S. Grebenev et al.,
Science 279, 2083 (1998).
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Molecules in helium nanodroplets

Amolecular impurity embedded into a helium nanodroplet: a controllable
system to explore angular momentum redistribution in a many-body
environment.

Temperature∼ 0.4K

Droplets are
superfluid

Easy toproduce

Free of perturbations

Only rotational
degrees of freedom

Easy to manipulate
by a laser

Image from: S. Grebenev et al.,
Science 279, 2083 (1998).

Interaction of a linear molecule
with an off-resonant laser pulse:

Ĥlaser = −1
4
∆αE2(t) cos2 θ̂
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Rotational spectrum of molecules in He nanodroplets

Molecules embedded into helium nanodroplets: rotational spectrum

Gas phase
(free)

in 4He

Images from: J. P. Toennies and A. F. Vilesov, Angew. Chem. Int. Ed. 43, 2622 (2004).
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Rotational spectrum of molecules in He nanodroplets

Molecules embedded into helium nanodroplets: rotational spectrum

Gas phase
(free)

in 4He

Images from: J. P. Toennies and A. F. Vilesov, Angew. Chem. Int. Ed. 43, 2622 (2004).

Rotational spec-
trum

Renormalizated
lines (smaller effec-
tive B)
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Dynamical alignment of molecules in He nanodroplets

Dynamical alignment experiments
(Stapelfeldt group, Aarhus University):

• Kick pulse, aligning the molecule.

• Probe pulse, destroying the molecule.

• Fragments are imaged, reconstructing
alignment as a function of time.

• Averaging over multiple realizations,
and varying the time between the two
pulses, one gets〈

cos2 θ̂2D
〉
(t)

with:

cos2 θ̂2D ≡ cos2 θ̂

cos2 θ̂ + sin2 θ̂ sin2 ϕ̂

Image from: B. Shepperson et al., Phys. Rev. Lett.
118, 203203 (2017).
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Dynamical alignment of molecules in He nanodroplets

A simpler example: a free molecule interacting with an off-resonant laser pulse

Ĥ = BĴ2 − 1
4
∆αE2(t) cos2 θ̂

When acting on a free molecule, the laser excites in a short timemany rotational
states (L ↔ L+ 2), creating a rotational wave packet:

Image from: G. Kaya et al., Appl. Phys. B 6, 122 (2016).

Movie
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Define all the quantities



Dynamical alignment of molecules in He nanodroplets

Effect of the environment is substantial: freemolecule vs. samemolecule in He.

Stapelfeldt group, Phys. Rev. Lett. 110, 093002 (2013).
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Dynamical alignment of molecules in He nanodroplets

Dynamics of isolated I2 molecules

Experiment: Henrik Stapelfeldt, Lars Christiansen,
Anders Vestergaard Jørgensen (Aarhus University)

Dynamics of I2 molecules in helium

Effect of the environment is substantial:

• The peak of prompt alignment doesn’t change its shape as the fluence
F =

∫
dt I(t) is changed.

• The revival structure differs from the gas-phase: revivals with a 50ps period of
unknown origin.

• The oscillations appear weaker at higher fluences.
• An intriguing puzzle: not even a qualitative understanding. Monte Carlo?
He-DFT? 10/35



Quasiparticle approach

The quantummechanical treatment of many-body systems is always
challenging. How can one simplify the quantum impurity problem?

Polaron: an electron dressed by a
field of many-body excitations.

Angulon: a quantum rotor dressed
by a field of many-body excitations.

Image from: F. Chevy, Physics 9, 86.
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The angulon

A composite impurity in a bosonic environment can be described by the
angulon Hamiltonian1,2,3,4 (angular momentum basis: k → {k, λ, µ}):

Ĥ = BĴ2︸︷︷︸
molecule

+
∑
kλµ

ωkb̂
†
kλµb̂kλµ︸ ︷︷ ︸

phonons

+
∑
kλµ

Uλ(k)
[
Y∗λµ(θ̂, ϕ̂)b̂

†
kλµ + Yλµ(θ̂, ϕ̂)b̂kλµ

]
︸ ︷︷ ︸

molecule-phonon interaction

• Linear molecule.

• Derived rigorously for a molecule in a
weakly-interacting BEC1.

• Phenomenological model for a molecule
in any kind of bosonic bath3.

1R. Schmidt and M. Lemeshko, Phys. Rev. Lett. 114, 203001 (2015).
2R. Schmidt and M. Lemeshko, Phys. Rev. X 6, 011012 (2016).
3M. Lemeshko, Phys. Rev. Lett. 118, 095301 (2017).
4Yu. Shchadilova, ”Viewpoint: A New Angle on Quantum Impurities”, Physics 10, 20 (2017). 12/35



Definire a voce tutte le quantità.
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• Phenomenological model for a molecule
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λ = 0: spherically
symmetric part.
λ ≥ 1 anisotropic
part.

1R. Schmidt and M. Lemeshko, Phys. Rev. Lett. 114, 203001 (2015).
2R. Schmidt and M. Lemeshko, Phys. Rev. X 6, 011012 (2016).
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Definire a voce tutte le quantità.



Canonical transformation

We apply a canonical transformation

Ŝ = e−iϕ̂⊗Λ̂ze−iθ̂⊗Λ̂ye−iγ̂⊗Λ̂z

where Λ̂ =
∑

µν b
†
kλµσ⃗µνbkλν is the

angular momentum of the bosons.

Cfr. the Lee-Low-Pines
transformation for the polaron.

Bosons: laboratory frame (x, y, z)
Molecule: rotating frame (x′, y′, z′)
defined by the Euler angles (ϕ̂, θ̂, γ̂).

laboratory frame rotating frame
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Canonical transformation

Result: a rotating linear molecule interacting with a bosonic bath can be
described in the frame co-rotating with the molecule by the following
Hamiltonian:

Ĥ = Ŝ−1ĤŜ = B(L̂ − Λ̂)2 +
∑
kλµ

ωkb̂
†
kλµb̂kλµ +

∑
kλ

Vkλ
(
b̂†kλ0 + b̂kλ0

)
,

• Macroscopic deformation of the bath, exciting an infinite number of
bosons.

• Simplifies angular momentum algebra.

• Hamiltonian diagonalizable through a coherent state transformation Û in
the B → 0 limit. An expansion in bath excitations is a strong coupling
expansion.

R. Schmidt and M. Lemeshko, Phys. Rev. X 6, 011012 (2016).
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R. Schmidt and M. Lemeshko, Phys. Rev. X 6, 011012 (2016).

Compare with the Lee-Low-Pines Hamiltonian

ĤLLP =

(
P−

∑
k kb̂

†
kb̂k
)2

2mI
+
∑
k

ωkb̂
†
kb̂k +

g
V
∑
k,k′

b̂†k′ b̂k′
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Dynamics: time-dependent variational Ansatz

We describe dynamics using a time-dependent variational Ansatz, including
excitations up to one phonon:

|ψLM(t)⟩ = Û(gLM(t) |0⟩bos |LM0⟩+
∑
kλn

αLM
kλn(t)b

†
kλn |0⟩bos |LMn⟩)

Lagrangian on the variational manifold defined by |ψLM⟩:

LT=0 = ⟨ψLM|i∂t − Ĥ|ψLM⟩

Euler-Lagrange equations of motion:
d
dt
∂L
∂ẋi

− ∂L
∂xi

= 0

where xi = {gLM, αLM
kλn}. We obtain a differential system{

ġLM(t) = . . .

α̇LM
kλn(t) = . . .

to be solved numerically; in αkλµ the momentum k needs to be discretized.
15/35



Equations of motion living on a manifold of Hilbert space.



Theory vs. experiments: I2

Comparison with experimental data from
Stapelfeldt group, Aarhus University, for different
molecules: I2.
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Generally good agreement for the
main features in experimental data:

• Oscillations with a period of 50ps,
growing in amplitude as the laser
fluence is increased.

• Oscillations decay: at most 4
periods are visible.

• The width of the first peak does not
changemuch with fluence.
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Theory vs. experiments: CS2
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Comparison with experimental data from
Stapelfeldt group, Aarhus University, for
different molecules: CS2.

• Again, a persistent oscillatory pattern.

• For higher values of the fluence the
oscillatory pattern disappears.
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Theory vs. experiments: OCS
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Comparison with experimental data from
Stapelfeldt group, Aarhus University, for
different molecules: OCS.

• Unfortunately the data is noisier.

• Oscillatory pattern not present, except in
a couple of cases where one weak
oscillation might be identified.
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• Can we shed light on the origin of oscillations? Why the 50ps period? Why do
they sometimes disappear? What about the decay?

• Yes! A microscopical theory allows us to reconstruct the pathways of angular
momentum redistribution: microscopical insight on the problem!

• We can fully characterize the helium excitations dressing by the molecule.
• At the same we can also analyze howmolecular properties (populations, energy
levels) are affected by the many-body environment.
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Experiments vs. theory: spectrum

The Fourier transform of the measured alignment cosine ⟨cos2 θ̂2D⟩(t) is
dominated by (L) ↔ (L+ 2) interferences. How is it affected when the level
structure changes?

EL+2 − EL
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The Fourier transform of the measured alignment cosine ⟨cos2 θ̂2D⟩(t) is
dominated by (L) ↔ (L+ 2) interferences. How is it affected when the level
structure changes?

EL+2 − EL

20Ghz corresponds to 50ps
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Many-body dynamics of angular momentum

i) Is this the full story? Can the observed
dynamics be explained only by means of
renormalised rotational levels?

Red dashed lines (only renormalised levels) vs.
solid black line (full many-body treatment).

ii) How long does it take for a molecule to
equilibrate with the helium environment
and form an angulon quasiparticle? This
requires tens of ps; which is also the
timescale of the laser! Approach to equilibrium of the quasiparticle

weight |gLM|2 and of the phonon populations∑
k |αkλµ|2.
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With a shorter 450 fs pulse, same molecule (I2), the
strong oscillatory pattern is absent:

Image from: B. Shepperson et al., Phys. Rev. Lett. 118, 203203 (2017).



Summary of the first part

• A novel kind of pump-probe spectroscopy, based on impulsive molecular
alignment in the laboratory frame, providing access to the structure of
highly excited rotational states.

• Superfluid bath leads to formation of robust long-wavelength oscillations
in the molecular alignment; an explanation requires a many-body theory of
angular momentum redistribution.

• Our theoretical model allows us to interpret this behavior in terms of the
dynamics of angulon quasiparticles, shedding light onto many-particle
dynamics of angular momentum at femtosecond timescales.

• Future perspectives:
• All molecular geometries (spherical tops, asymmetric tops).
• Optical centrifuges and superrotors.
• Can a rotating molecule create a vortex?

• For more details: arXiv:1906.12238
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Angular momentum and Feynman
diagrams



Perturbative approach and Feynman diagrams

Back to the angulon Hamiltonian:

Ĥ = BĴ2︸︷︷︸
molecule

+
∑
kλµ

ωkb̂
†
kλµb̂kλµ︸ ︷︷ ︸

phonons

+
∑
kλµ

Uλ(k)
[
Y∗λµ(θ̂, ϕ̂)b̂

†
kλµ + Yλµ(θ̂, ϕ̂)b̂kλµ

]
︸ ︷︷ ︸

molecule-phonon interaction

Perturbation theory/Feynman diagrams:

23/35



Perturbative approach and Feynman diagrams

Back to the angulon Hamiltonian:

Ĥ = BĴ2︸︷︷︸
molecule

+
∑
kλµ

ωkb̂
†
kλµb̂kλµ︸ ︷︷ ︸

phonons

+
∑
kλµ

Uλ(k)
[
Y∗λµ(θ̂, ϕ̂)b̂

†
kλµ + Yλµ(θ̂, ϕ̂)b̂kλµ

]
︸ ︷︷ ︸

molecule-phonon interaction

Perturbation theory/Feynman diagrams:

= + +

+ + . . .

How does angular momentum enter this picture?
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Feynman rules

Each free propagator ∑
λiµi

(−1)µiG0,λiλi µi

Each phonon propagator ∑
λiµi

(−1)µiDλiλi µi

Each vertex

(−1)λi ⟨λi| |Y(λj)| |λk⟩

(
λi λj λk
µi µj µk

)

GB and M. Lemeshko, Phys. Rev. B 96, 419 (2017).

Usually momentum conservation is
enforced by an appropriate labeling.

Not the same for angular
momentum, j and λ couple to
|j− λ|, . . . , j+ λ.

∑
j′m′ 24/35



Feynman rules

Each free propagator ∑
λiµi

(−1)µiG0,λiλi µi

Each phonon propagator ∑
λiµi

(−1)µiDλiλi µi

Each vertex

(−1)λi ⟨λi| |Y(λj)| |λk⟩

(
λi λj λk
µi µj µk

)

GB and M. Lemeshko, Phys. Rev. B 96, 419 (2017).

Diagrammatic theory of angular momentum (developed in the context of
theoretical atomic spectroscopy)

from D. A. Varshalovich, A. N. Moskalev, V. K. Khersonskii, “Quantum Theory of Angular Momentum”.
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Angulon spectral function

Let us use the Feynman diagrams!
First order self-energy: Dyson equation :

=

angulon quantum
rotor

many-body field

Finally the spectral function allows for a study the whole excitation spectrum of
the system:

Aλ(E) = − 1
π
ImGλ(E+ i0+)

Equivalent to a simple, 1-phonon variational Ansatz (cf. Chevy Ansatz for the
polaron)

|ψ⟩ = Z1/2LM |0⟩ |LM⟩+
∑
kλµ
jm

βkλjCLM
jm,λµb

†
kλµ |0⟩ |jm⟩
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Spectral function: Aλ(E)



What about higher orders?

= + +

+ + . . .+ +

+ . . .+ + . . .

At order n: n integrals, and higher angular momentum couplings (3n-j symbols).
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A lot to gain from connecting DiagMC and the theory of molecular simulations.



A feasible plan?

Notice the logarithmic scale:
exponentially rare, since they are
exponentially more difficult to
compute.

For monster stuff, like a 303-j symbol taking 2.3 years
to compute, see: C. Brouder and G. Brinkmann,
Journal of Electron Spectroscopy and Related
Phenomena 86, 127 (1997).
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Diagrammatic Monte Carlo

Numerical technique for summing all Feynman diagrams1. More on this later...

= + +

+ + …+ +

+…

Up to now: structureless particles (Fröhlich polaron, Holstein polaron), or
particles with a very simple internal structure (e.g. spin 1/2).

Molecules2? Connecting DiagMC andmolecular simulations!

1N. V. Prokof’ev and B. V. Svistunov, Phys. Rev. Lett. 81, 2514 (1998).
2GB, T.V. Tscherbul, M. Lemeshko, Phys. Rev. Lett. 121, 165301 (2018).
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Diagrammatic Monte Carlo

Hamiltonian for an impurity problem: Ĥ = Ĥimp + Ĥbath + Ĥint

Green’s function

G(τ) = + +

+ + . . . = all Feynman diagrams

DiagMC idea: set up a stochastic process sampling among all diagrams1.

Configuration space: diagram topology, phonons internal variables, times,
etc... Number of variables varies with the topology!

How: ergodicity, detailed balancew1p(1 → 2) = w2p(2 → 1)

Result: each configuration is visited with probability∝ its weight.
1N. V. Prokof’ev and B. V. Svistunov, Phys. Rev. Lett. 81, 2514 (1998).
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Works in continuous time and in the thermody-
namic limit: no finite-size effects or systematic
errors.



Updates

We need updates spanning the whole configuration space:

Add update: a new arc is added to a
diagram.
Remove update: an arc is removed
from the diagram.
Change update: modifies the total
length of the diagram.

Result: the time the stochastic process spends with diagrams of length τ will be
proportional to G(τ). One can fill a histogram after each update and get the
Green’s function.
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Diagrammatics for a rotating impurity

Moving particle: linear momentum
circulating on lines.

Rotating particle: angular momentum
circulating on lines.

It gets weirder... Down the rabbit hole of angular momentum composition!
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Diagrammatics for a rotating impurity

Moving particle: linear momentum
circulating on lines.

Rotating particle: angular momentum
circulating on lines.

It gets weirder... Down the rabbit hole of angular momentum composition!

k⃗ and q⃗ fully deter-
mine k⃗− q⃗

j and λ can sum
in many different
ways: |j−λ|, . . . j+λ
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Diagrammatics for a rotating impurity

Moving particle: linear momentum
circulating on lines.

Rotating particle: angular momentum
circulating on lines.

It gets weirder... Down the rabbit hole of angular momentum composition!

The phonon takes
away q⃗1 momen-
tum... ...and gives back q⃗1

momentum

The phonon does
not subtract an-
gular momentum
from the impurity...

...but gives back
two quanta!
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Diagrammatics for a rotating impurity

Moving particle: linear momentum
circulating on lines.

Rotating particle: angular momentum
circulating on lines.

It gets weirder... Down the rabbit hole of angular momentum composition!
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The configuration space is more complex... and
bigger! We need different updates.

Shuffle update: select one 1-particle-
irreducible component, shuffle the momenta
couplings to another allowed configuration.



DiagMC: results

The ground-state energy of the angulon Hamiltonian obtained using DiagMC1 as
a function of the dimensionless bath density, ñ, in comparison with the
weak-coupling theory2 and the strong-coupling theory3.

The energy is obtained by
fitting the
long-imaginary-time
behaviour of Gj with
Gj(τ) = Zj exp(−Ej τ).

Inset: energy of the L = 0, 1, 2
states.

1GB, T.V. Tscherbul, M. Lemeshko, Phys. Rev. Lett. 121, 165301 (2018).
2R. Schmidt and M. Lemeshko, Phys. Rev. Lett. 114, 203001 (2015).
3R. Schmidt and M. Lemeshko, Phys. Rev. X 6, 011012 (2016).
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Conclusions

• A numerically-exact approach to quantummany-body systems involving
coupled angular momenta.

• Works in continuous time and in the thermodynamic limit: no finite-size
effects or systematic errors.

• Future perspectives:
• More advanced schemes (e.g. Σ, bold).
• Hybridisation of translational and rotational motion.
• Real-time dynamics?

• More details: GB, T.V. Tscherbul, M. Lemeshko, Phys. Rev. Lett. 121, 165301
(2018).
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Backup slide # 1: finite-temperature dynamics

For the impurity: average over a statistical ensamble, weights∝ exp(−βEL).

For the bath: the zero-temperature bosonic expectation values inL are
converted to finite temperature ones1,2.

LT=0 = ⟨0|Ô†(i∂t − Ĥ)Ô|0⟩bos −→ LT = Tr
[
ρ0 Ô†(i∂t − Ĥ)Ô

]

A couple of additional details:

• The laser changes the total angular momentum of the system. An appropriate
wavefunction is then |Ψ⟩ =

∑
LM |ψLM⟩

• Focal averaging, accounting for the fact that the laser is not always perfectly
focused.

• States with odd/even angular momenta may have different abundances, due to
the nuclear spin.

[1] A. R. DeAngelis and G. Gatoff, Phys. Rev. C 43, 2747 (1991).
[2] W.E. Liu, J. Levinsen, M. M. Parish, “Variational approach for impurity dynamics at finite temperature”,
arXiv:1805.10013
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Backup slide # 2: the angulon

A composite impurity in a bosonic environment can be described by the
angulon Hamiltonian1,2,3,4 (angular momentum basis: k → {k, λ, µ}):

Ĥ = BĴ2︸︷︷︸
molecule

+
∑
kλµ

ωkb̂
†
kλµb̂kλµ︸ ︷︷ ︸

phonons

+
∑
kλµ

Uλ(k)
[
Y∗λµ(θ̂, ϕ̂)b̂

†
kλµ + Yλµ(θ̂, ϕ̂)b̂kλµ

]
︸ ︷︷ ︸

molecule-phonon interaction

• Linear molecule.

• Derived rigorously for a molecule in a
weakly-interacting BEC1.

• Phenomenological model for a molecule
in any kind of bosonic bath3.

1R. Schmidt and M. Lemeshko, Phys. Rev. Lett. 114, 203001 (2015).
2R. Schmidt and M. Lemeshko, Phys. Rev. X 6, 011012 (2016).
3M. Lemeshko, Phys. Rev. Lett. 118, 095301 (2017).
4Yu. Shchadilova, ”Viewpoint: A New Angle on Quantum Impurities”, Physics 10, 20 (2017).



Definire a voce tutte le quantità.
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†
kλµ + Yλµ(θ̂, ϕ̂)b̂kλµ

]
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molecule-phonon interaction

• Linear molecule.

• Derived rigorously for a molecule in a
weakly-interacting BEC1.

• Phenomenological model for a molecule
in any kind of bosonic bath3.

λ = 0: spherically
symmetric part.
λ ≥ 1 anisotropic
part.

1R. Schmidt and M. Lemeshko, Phys. Rev. Lett. 114, 203001 (2015).
2R. Schmidt and M. Lemeshko, Phys. Rev. X 6, 011012 (2016).
3M. Lemeshko, Phys. Rev. Lett. 118, 095301 (2017).
4Yu. Shchadilova, ”Viewpoint: A New Angle on Quantum Impurities”, Physics 10, 20 (2017).
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Backup slide # 3: canonical transformation

We apply a canonical transformation

Ŝ = e−iϕ̂⊗Λ̂ze−iθ̂⊗Λ̂ye−iγ̂⊗Λ̂z

where Λ̂ =
∑

µν b
†
kλµσ⃗µνbkλν is the

angular momentum of the bosons.

Cfr. the Lee-Low-Pines
transformation for the polaron.

Bosons: laboratory frame (x, y, z)
Molecule: rotating frame (x′, y′, z′)
defined by the Euler angles (ϕ̂, θ̂, γ̂).

laboratory frame rotating frame



Finite-temperature dynamics

For the impurity: average over a statistical ensamble, weights∝ exp(−βEL).

For the bath: the zero-temperature bosonic expectation values inL are
converted to finite temperature ones1,2.

LT=0 = ⟨0|Ô†(i∂t − Ĥ)Ô|0⟩bos −→ LT = Tr
[
ρ0 Ô†(i∂t − Ĥ)Ô

]

A couple of additional details:

• The laser changes the total angular momentum of the system. An appropriate
wavefunction is then |Ψ⟩ =

∑
LM |ψLM⟩

• Focal averaging, accounting for the fact that the laser is not always perfectly
focused.

• States with odd/even angular momenta may have different abundances, due to
the nuclear spin.

[1] A. R. DeAngelis and G. Gatoff, Phys. Rev. C 43, 2747 (1991).
[2] W.E. Liu, J. Levinsen, M. M. Parish, “Variational approach for impurity dynamics at finite temperature”,
arXiv:1805.10013
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ρ0 Ô†(i∂t − Ĥ)Ô

]
A couple of additional details:

• The laser changes the total angular momentum of the system. An appropriate
wavefunction is then |Ψ⟩ =

∑
LM |ψLM⟩

• Focal averaging, accounting for the fact that the laser is not always perfectly
focused.

• States with odd/even angular momenta may have different abundances, due to
the nuclear spin.
[1] A. R. DeAngelis and G. Gatoff, Phys. Rev. C 43, 2747 (1991).
[2] W.E. Liu, J. Levinsen, M. M. Parish, “Variational approach for impurity dynamics at finite temperature”,
arXiv:1805.10013



Finite-temperature dynamics

For the impurity: average over a statistical ensamble, weights∝ exp(−βEL).

For the bath: the zero-temperature bosonic expectation values inL are
converted to finite temperature ones1,2.
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✓ Strong coupling

✓ Out-of-equilibri
um dynamics

✓ Finite temperature (B ∼ kBT)



Some additional considerations:

• |Ψ⟩ =
∑

LM |ψLM⟩
• Averages of the laser intensitiy.

• States with odd/even angular momenta may have different relative
abundances, due to the nuclear spin.
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