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Quantum impurities

One particle (or a few particles)
interacting with a many-body
environment.

• Condensed matter
• Chemistry
• Ultracold atoms: tunable interaction
with either bosons or fermions.

A prototype of a many-body system.
How are the properties of the particle
modified by the interaction?
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Quantum impurities

Structureless impurity: translational
degrees of freedom/linear momentum
exchange with the bath. Most common
cases: electron in a solid, atomic
impurities in a BEC.

Image from: F. Chevy, Physics 9, 86.

Composite impurity, e.g. a diatomic
molecule: translational and rotational
degrees of freedom/linear and angular
momentum exchange.
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Both these scenarios can be formalized in terms
of quasiparticles using the polaron and the Fröh-
lich Hamiltonian.
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What about a rotating particle?



In this talk

Rotating impurities as
quasiparticles, and
diagrammatics

Molecules in 4He
nanodroplets

Ultra-cold atoms:
an impurity in a

Bose-Bose mixture

Images from S. Grebenev et al., Science 279, 2083 (1998) and from C.R. Cabrera’s Ph.D. thesis.
4/30



In this talk

Rotating impurities as
quasiparticles, and
diagrammatics

Molecules in 4He
nanodroplets

Ultra-cold atoms:
an impurity in a

Bose-Bose mixture

Images from S. Grebenev et al., Science 279, 2083 (1998) and from C.R. Cabrera’s Ph.D. thesis.
4/30



The angulon Hamiltonian

A composite impurity in a bosonic environment can be described by the angulon
Hamiltonian1234 (angular momentum basis: k → {k, λ, µ}):

Ĥ = BĴ2︸︷︷︸
molecule

+
∑
kλµ

ωkb̂†kλµb̂kλµ︸ ︷︷ ︸
phonons

+
∑
kλµ

Uλ(k)
[
Y∗

λµ(θ̂, ϕ̂)b̂†kλµ + Yλµ(θ̂, ϕ̂)b̂kλµ

]
︸ ︷︷ ︸

molecule-phonon interaction

• Linear molecule
• Derived rigorously for a molecule in
a weakly-interacting BEC1

• Phenomenological model for a
molecule in any kind of bosonic
bath3

1R. Schmidt and M. Lemeshko, Phys. Rev. Lett. 114, 203001 (2015).
2R. Schmidt and M. Lemeshko, Phys. Rev. X 6, 011012 (2016).
3M. Lemeshko, Phys. Rev Lett. 118, 095301 (2017).
4Yu. Shchadilova, ”Viewpoint: A New Angle on Quantum Impurities”, Physics 10, 20 (2017). 5/30



How to tackle the Hamiltonian

Variational Ansatz

Expansion in bath excitations (cfr. Chevy Ansatz for polarons):

|Ψ⟩ ≈ | ⟩imp ⊗ |0⟩bos + | ⟩imp ⊗ |1⟩bos + . . .

plus some variational coefficients, to optimize by minimizing energy.

See for instance: R. Schmidt and M. Lemeshko, Phys. Rev. Lett. 114, 203001 (2015).

Feynman diagrams

Here I will show how the problem can be described in terms of Feynman
diagrams, and how Feynman diagrams can be systematically summed to
arbitrarily high order with diagrammatic Monte Carlo.
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Diagrammatics for molecular rotations

How do we describe molecular rotations with Feynman diagrams? How does
angular momentum enter this picture?

GB and M. Lemeshko, Phys. Rev. B 96, 419 (2017).
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How does angular momentum enter
here?
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Write on each line j, m, that is angular
momentum and projection along z axis.
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Angular momentum dependent propaga-
tors: G0,j and Dj
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A 3j symbol for each vertex, enforc-
ing angular momentum conservation.(

j1 j2 j3

m1 m2 m3

)



Diagrammatics for molecular rotations

How do we describe molecular rotations with Feynman diagrams? How does
angular momentum enter this picture?

GB and M. Lemeshko, Phys. Rev. B 96, 419 (2017). 7/30

Redeveloped the Feynman diagram formalism to
include angular momentum.

Opens up the possibility of using several tools
from many-body theory.

For instance: Dyson equation

G =
1

G−1
0 − Σ



Diagrammatic Monte Carlo

Numerical technique for sampling over all Feynman diagrams1.

• DiagMC idea: set up a stochastic process sampling among all diagrams1
• Configuration space: diagram topology, phonons internal variables, times,
etc... Number of variables varies with the topology!

• How: ergodicity, detailed balance w1p(1 → 2) = w2p(2 → 1)
• Result: each configuration is visited with probability ∝ its weight.

Up to now: structureless particles (Fröhlich polaron, Holstein polaron), or
particles with a very simple internal structure (e.g. spin 1/2). Now: molecules.
1N. V. Prokof’ev and B. V. Svistunov, Phys. Rev. Lett. 81, 2514 (1998).
2GB, T.V. Tscherbul, M. Lemeshko, Phys. Rev. Lett. 121, 165301 (2018).
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Diagrammatic Monte Carlo: results

The ground-state energy of the angulon Hamiltonian obtained using DiagMC1 as a
function of the dimensionless bath density, ñ, compared with the weak-coupling
theory2 and the strong-coupling theory3.

The energy and
quasiparticle weight are
obtained by fitting the
long-imaginary-time
behaviour of Gj as
Gj(τ) = Zj exp(Ej τ).

Inset: energy of the
L = 0, 1, 2 states.

A numerically exact technique for studying molecules. Bridging different
communities (solid state, chemistry) with far reaching consequences4.
1GB, T.V. Tscherbul, M. Lemeshko, Phys. Rev. Lett. 121, 165301 (2018).
2R. Schmidt and M. Lemeshko, Phys. Rev. Lett. 114, 203001 (2015).
3R. Schmidt and M. Lemeshko, Phys. Rev. X 6, 011012 (2016).
4GB, Q.P. Ho, T.V. Tscherbul, M. Lemeshko, Phys. Rev. B 108, 045115 (2023). 9/30
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Molecules in helium nanodroplets

A molecular impurity embedded into a helium nanodroplet: a controllable system
to explore angular momentum redistribution in a many-body environment.

Temperature
∼ 0.4K

Droplets are
superfluid

Easy to produce

Free of perturbations

Only rotational degrees
of freedom

Easy to manipulate with a
laser

Image from: S. Grebenev et al., Science 279, 2083 (1998).
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Rotational spectrum of molecules in He nanodroplets

Molecules embedded into helium nanodroplets: rotational spectrum

Images from: S. Grebenev et al., Science 279, 2083 (1998). and J.P. Toennies and A.F. Vilesov,
Angew. Chem. Int. Ed. 43, 2622 (2004).

12/30

Rotational spectrum in the gas
phase: free molecule.

Renormalized lines (smaller ef-
fective B) in 4 He.



Dynamical alignment of molecules in helium nanodroplets

Dynamical alignment experiments (Stapelfeldt group, Aarhus University):

• Kick pulse, aligning the molecule.
• Probe pulse, destroying the molecule.
• Fragments are imaged, reconstructing
alignment as a function of time.

• Averaging over multiple realizations, and
varying the time between the two pulses,
one gets

⟨cos2 θ̂2D⟩(t)

with

cos2 θ̂2D ≡ cos2 θ̂

cos2 θ̂ + sin2 θ̂ sin2 ϕ̂ Image from: B. Shepperson et al.,
Phys. Rev. Lett. 118, 203203 (2017).

A.S. Chatterley, ..., GB, et al., Phys. Rev. Lett. 125, 013001 (2020).
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Rotational coherence spectroscopy of molecules in helium nanodroplets

Let’s look at the alignment traces for CS2 for different value of the fluence, as well
as their Fourier transform.

• The Fourier transform ⟨cos2 θ̂2D⟩(t) is dominated
EL − EL−2 for all L’s.

• A new kind of “rotational spectroscopy”.
Investigating higher states than conventional IR
spectroscopy.

• Unknown oscillation period of ∼ 50ps,
corresponding to a peak at around 20 GHz in the
power spectrum.

• The “renormalized rotational constant” picture
here is not enough! Note that

EL = B∗L(L + 1) =⇒ EL − EL−2 ∝ BL

and this does not explain the 20 GHz peak.
1A.S. Chatterley, ..., GB, et al., Phys. Rev. Lett. 125, 013001 (2020).

14/30



A theoretical model for excited rotational states of molecules in a superfluid

Canonical transformation

A canonical transformation brings us to a frame of reference co-moving
with the molecule (cfr. the Lee-Low-Pines transformation for the polaron).

Ĥ = B(L̂ − Λ̂)2 +
∑
kλµ

ωkb̂†kλµb̂kλµ +
∑
kλ

Vλ(k)[b̂†kλ0 + b̂kλ0]

To further simplify the problem we consider a single mode carrying energy ω, fixed
at the roton energy, and carrying angular momentum λ. The molecule-solvent
interaction strength u is kept as a phenomenological parameter to be adjusted.

Ĥ = B(L̂ − Λ̂)2 + ω
∑
µ

b̂†λµb̂λµ + u
(
b̂†λ0 + b̂λ0

)
1I.N. Cherepanov, GB, et al., Phys. Rev. A 104, L061303 (2021).
2I.N. Cherepanov, GB, et al., New J. Phys. 24, 075004 (2022).
3R. Schmidt and M. Lemeshko, Phys. Rev. X 6, 011012 (2016). 15/30
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L̂: total angular momentum of the system
Λ̂: angular momentum of the bosons



Main results (1/2)

We diagonalize the Hamiltonian in the basis containing multiple excitations of the
single bosonic mode:

ψ
(m)

L[n1n2...nm],M = |LNM⟩mol ⊗
(

b†λn1
b†λn2

...b†λnm |0⟩bos
)

• Spectrum now includes a centrifugal distortion term

EJ = B∗J(J + 1)− D∗J2(J + 1)2

and now EL − EL−2 ∝ constant in some region and
can explain the observed spectrum.

• B∗ and D∗ are given in terms of simple analytical
formulas

B∗

B ≈ 1 − ũ2

(1 + ω̃)3 ;
D∗

B ≈ ũ2

λ(λ+ 1) (1 + ω̃)5

and the spectrum convincingly matches the
experiments, up to high rotational states, for
different molecules (CS2, I2).

1A.S. Chatterley, ..., GB, et al., Phys. Rev. Lett. 125, 013001 (2020).
2I.N. Cherepanov, GB, et al., Phys. Rev. A 104, L061303 (2021). 16/30



Main results (2/2)

• Empirical relationship

D∗/B ≈ ξ (1 − B∗/B)
5/3

with ξ = ũ−4/3/[λ(λ+ 1)]. This dependence is similar
to the power law

D∗ = 0.031 × B∗1.818

found on empirical grounds, but gives the correct
limit when B∗ → B.

• Environment-limited rotation: after a certain
molecule-dependent value of L, the molecule loses
energy to the environment very fast. Rotational
analog of Landau’s critical velocity?

• Timescales (a few ps vs. 450 fs).

aA.S. Chatterley, ..., GB, et al., Phys. Rev. Lett. 125, 013001 (2020).
bI.N. Cherepanov, GB, et al., Phys. Rev. A 104, L061303 (2021).
cI.N. Cherepanov, GB, et al., New J. Phys. 24, 075004 (2022).
dA. Cappellaro, GB, et al., J. Chem. Phys. 162, 074104 (2025). 17/30
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An impurity in a heteronuclear two-component Bose-Bose mixture

C. D’Errico et al.,
Phys. Rev. Research 1, 033155 (2019).

A Bose-Bose mixture consists of a mixture of two
different bosonic atomic species.

Quite involved phase diagram in the ultracold regime,
including the remarkable quantum droplet state, i.e. a
liquid-like self-bound state.

Quantum droplets have been observed in a homonuclear
spin mixture of 39K, both in the presence of an external
potential and in free space, as well as in a heteronuclear
mixture of 41K and 87Rb.
We consider this system, plus one (structureless,
pointlike) impurity.
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What makes a liquid a
liquid?

Typically, it is a balance
between repulsive and
attractive interatomic
forces!

How can one achieve this
balance with ultracold
matter?

Image from: Wikibooks,
“Molecular simulation”.



The system: Hamiltonian

Interacting Bose-Bose mixture:

Ĥbb =

∫
d3r

∑
i=1,2

ϕ̂†
i (r)(−

ℏ2∇2

2mi
+

gii

2 |ϕ̂i(r)|2)ϕ̂i(r) + g12

∫
d3r|ϕ̂1(r)|2|ϕ̂2(r)|2

where ϕ̂i, ϕ̂†
i (i = 1, 2) are bosonic field operators acting on two different bosonic

species, mi are the masses of each species and gij is the contact interaction
strength between species i and species j.

Impurity in the mixture:

ĤI =
P̂2

2mI
+
∑

i
gIi

∫
d3r ρ(r) |ϕ̂i(r)|2

where gIi is the interaction between the impurity and the species i and
ρ(r) = δ(3)(r − R̂).

Many parameters! Five different interaction strengths: g11, g22, g12, gI1, gI2.

20/30



Bose-Bose mixture: mean-field phase diagram

Mean-field description: one can obtain conditions for the stability of the mixture
at T = 0 from a Gross-Pitaevskii approach1 considering g11, g22 > 0 and varying
the sign of g12:

• When g12 >
√g11g22 phase separation

occurs.

• When −√g11g22 < g12 <
√g11g22 the

system is in a miscible state.

• When −√g11g22 > g12 the system
undergoes collapse.

1See for instance C. Pethick and H. Smith, “Bose-Einstein condensation in dilute gases”, (Cambridge University Press,
Cambridge, England, 2002).
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Let us consider only the mixture, in the zero-temperature limit.



Self-bound quantum droplets in a Bose-Bose mixture

Single-component Bose gas

E
V =

gn2

2

(
1 +

128
√

na3

15
√
π

+ . . .

)
with the LHY correction, which is the one-loop correction over the mean-
field equation of state.

Two-component Bose mixture

E
V =

∑
ij

gijninj

2 +
8

15π2 m3/2
1 (g11n1)

5/2f(m2

m1
,

g2
12

g11g22
,

g22n2

g11n1
)

and there can be competition
between the mean-field
attraction ∝ n2 and beyond
mean-field repulsion ∝ n5/2, also
in the weakly-interacting regime. Image from: Science 359, 274 (2018).

D.S. Petrov, Phys. Rev. Lett. 115, 155302 (2015).
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Self-bound quantum droplets in a Bose-Bose mixture

“Classical” van der Waals paradigm
for a droplet

Quantum droplet

What about dipolar droplets (Dy in Stuttgart, Er in Innsbruck)? There are
substantial differences, but the basic mechanism – mean-field attraction
compensated by beyond-mean-field effects – is essentially the same.

Images from D.S. Petrov, Nat. Phys. 14, 211 (2018).
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A closer look at the Bose-Bose mixture

We consider a heteronuclear 41K-87Rb Bose
mixture, on top of which which consider a
dilute third component realized with a
different hyperfine state of 41K – which we
shall dub the ‘I’ species. In the impurity limit
for the third component, the system is
described by five scattering lengths, namely
aK-K, aK-Rb, aRb-Rb, aI-K, aI-Rb. The behaviour of
aI-Rb, and aK-Rb as a function of the magnetic
field B in the range between 60 and 105 G.

Scattering length calculations: A. Simoni.

The other three scattering lengths are almost constant in the range considered,
i.e. aK-K ≃ aI-K ≃ 62a0, aRb-Rb ≃ 100.4a0.

The liquid-gas transition parameter δg = gK-Rb +
√gK−KgRb-Rb, allows us to chart

the Bose mixture phase diagram: as the magnetic field is varied in the
aforementioned range, the mixture goes through the droplet, miscible and
immiscible phases.

GB, A. Burchianti, F. Minardi, T. Macrì, Phys. Rev. A 106, 023301 (2022) 24/30



Droplet phase: results

We study the effect of an impurity in the droplet phase within the Gross-Pitaevskii
framework.

Quite a rich phenomenology arises, with three
different regimes.
A: for B = 63.5 G the potential, even though it
has a small attractive region, does not support
bound states in three dimensions not allowing
for an impurity to be bound to the droplet.

B: as the magnetic field is increased, for B = 65.1 G and for B = 66.0 G we
observe that the impurity is localized at the surface of the droplet at a distance
r ≈ 1µm form the center.

C: finally, as the magnetic field is further increased we show that for B = 66.6 G
the impurity is localized at the center of the self-bound droplet.

GB, A. Burchianti, F. Minardi, T. Macrì, Phys. Rev. A 106, 023301 (2022)
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Rotational states: an impurity on the surface of a sphere?

Let us consider just the effective potential Veff, for a fixed droplet profile. Which
states can it support?

a-b) Ground state of an impurity at B = 66.6 G and at B = 65.8 G.
c) Excited state of an impurity at B = 65.8 G for ℓ = 10 and m = 10.
d) Effective potential Veff(r) and density of the impurity nI(r) for the n = 0, . . . , 3
s-wave bound states.
e) Spectrum of the impurity eigenstates in the presence of the effective potential.

GB, A. Burchianti, F. Minardi, T. Macrì, Phys. Rev. A 106, 023301 (2022)
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A new perspective: impurities on the surface of a sphere. Experimental
realization via a bubble trap in microgravity (fall tower, ISS)?

How does the low-energy Hamiltonian look like?

Ĥimp =
ℏ2L̂2

2mR2

Ĥbos =
∑
lm

ωl b̂†lmb̂lm

Ĥimp-bos =
∑
lm

UlmY∗
lm(θ̂imp, ϕ̂imp)b†lm + h.c.

(Essentially) the same Hamiltonian as the one describing a rotating impu-
rity in a 3D condensate. In one case the topological information is on the
impurity, in the other case it is on the condensate, but the physics is the
same!
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Something more: multi-layer systems

Classic bilayer XY model: BKT-paired phase.
H0 = −J

∑
⟨ij⟩ cos (ϕi − ϕj)− J

∑
⟨ij⟩ cos (ψi − ψj)

H1 = −K
∑

i cos (ϕi − ψi)

GB, N. Defenu, I. Nándori, L. Salasnich, A. Trombettoni, Phys. Rev. Lett. 123, 100601 (2019).

Exotic phases in multi-layer systems can be
discovered and categorized via machine learning.

W. Rządkowski, N. Defenu, S. Chiacchiera, A. Trombettoni, GB, New J. Phys. 22, 093026 (2020).

Bond percolation on two-dimensional
multilayers: p is the activation probability for
intra-layer bonds, while pperp is the activation
probability for inter-layer bonds.

GB, A. Trombettoni, “Phase diagram of multilayer percolation”, in preparation. 28/30
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Backup slide # 1

Pekar Ansatz

Exact in the strong coupling regime.



Backup slide # 2

Variational Ansatz

Expansion in bath excitations:
|Ψ⟩ ≈ | ⟩imp ⊗ |0⟩bos + | ⟩imp ⊗ |1⟩bos + . . .

Or, better, as the total angular momentum L,M is a good quantum number:
|ΨLM⟩ ≈ |

LM
⟩imp ⊗ |0⟩bos + CLM

j1m1j2m2 | j1m1
⟩imp ⊗ |1j2m2⟩bos + . . .

plus some variational coefficients, to optimize by minimizing energy.
See for instance: R. Schmidt and M. Lemeshko, Phys. Rev. Lett. 114, 203001 (2015).
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To study the effect of an impurity in the droplet phase we assume that, within the
Gross-Pitaevskii framework, the two components are described by a single
complex field ϕ(r) with the associated energy functional

Ebb[ϕi] =

∫
d3r

∑
i=1,2

(
ℏ2|∇ϕi|2

2mi
+

gii

2 |ϕi|4
)
+ g12|ϕ1|2|ϕ2|2+

+
8

15π2ℏ3

(
m

3
5
1 g11|ϕ1|2 + m

3
5
2 g22|ϕ2|2

) 5
2

where the last term is the beyond mean-field interaction for a general
two-component mixture. The impurity interaction with the Bose mixture is
described by the energy functional

EI[ϕi, ψ] =

∫
d3rℏ

2|∇ψ|2

2mI
+
(

gID|ϕ(r)|2 + EBMF(r)
)
|ψ(r)|2

The last term EBMF(r) is the beyond mean-field interaction for a general
two-component mixture. Note that EBMF ∝ n3/2.
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