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Composite impurity, e.g. a diatomic molecule:
translational and rotational degrees of
freedom/linear and angular momentum
exchange.
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nanodroplets.
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Quantum impurities
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This scenario can be formalized in terms of
quasiparticles using the polaron and the Froh-

lich Hamiltonian.

Rotating
molecules
inside a ‘cage’in
perovskites.

T.Chen et al., PNAS 114, 7519 (2017).
J. Lahnsteiner et al., Phys. Rev. B 94,
214114 (2016).
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Quantum impurities

One particle (or a few particles) interacting with a many-body environment.

3. Diagrammatic Monte Carlo.
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The angulon

A composite, rotating impurity in a bosonic environment can be described by
the angulon Hamiltonian®:?:3:4 (angular momentum basis: k — {k, A, 1}):

5 ef AT, 5 it A nn
H= 82 +Zmbwbw+2m(k)[ W(8,0)bLy,, + V(0 ,(b)bw]
molecule  KAn kXp

phonons molecule-phonon interaction

 Linear molecule.

+ Derived rigorously for a moleculein a
weakly-interacting BEC?.

+ Phenomenological model for a
molecule in any kind of bosonic
bath3.

R. Schmidt and M. Lemeshko, Phys. Rev. Lett. 114, 203001 (2015).

2R. Schmidt and M. Lemeshko, Phys. Rev. X 6,011012 (2016).

3M. Lemeshko, Phys. Rev. Lett. 118, 095301 (2017).

4Y. Shchadilova, "Viewpoint: A New Angle on Quantum Impurities”, Physics 10, 20 (2017). 3/11





Definire a voce tutte le quantità.


A composite, rotating impurity in a bosonic environment can be described by
the angulon Hamiltonian®:?:3:4 (angular momentum basis: k — {k, A, 1}):
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Inolecule kA kXp

molecule-phonon interaction

'\ = 0: spherically
symmetric part.

A > 1 anisotropic
part. foramoleculeina

weakly-interacting BEC?.

+ Phenomenological model for a
molecule in any kind of bosonic
bath3.

*R. Schmidt and M. Lemeshko, Phys. Rev. Lett. 114, 203001 (2015).
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3M. Lemeshko, Phys. Rev. Lett. 118, 095301 (2017). o
4Y. Shchadilova, "Viewpoint: A New Angle on Quantum Impurities”, Physics 10, 20 (2017).
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Feynman diagrams
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How do we describe molecular rotations with Feynman diagrams? How does
angular momentum enter this picture?
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Feynman diagrams
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Feynman diagrams
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Feynman diagrams
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Feynman diagrams
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Diagrammatic Monte Carlo

Numerical technique for sampling over all Feynman diagrams?.

Il
+
+

Up to now: structureless particles (Fréhlich polaron, Holstein polaron), or
particles with a very simple internal structure (e.g. spin /2).

This talk: molecules?.

N. V. Prokof’ev and B. V. Svistunov, Phys. Rev. Lett. 81, 2514 (1998).

2GB, TV. Tscherbul, M. Lemeshko, Phys. Rev. Lett. 121, 165301 (2018). 5/11



Diagrammatic Monte Carlo for a quantum impurity

Green’s function

+ ¢ 4 . ¢ + ... = all Feynman diagrams

DiagMC idea: set up a stochastic process sampling among all diagrams®.

Configuration space: diagram topology, phonons internal variables, times,
etc... Number of variables varies with the topology!

How: ergodicity, detailed balance w;p(1 — 2) = w,p(2 — 1)

Result: each configuration is visited with probability o its weight.
N. V. Prokof’ev and B. V. Svistunov, Phys. Rev. Lett. 81, 2514 (1998).
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Usually (e.g. Frohich polaron) three updates are enough to span the whole
configuration space:
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Are three updates enough for molecular rotations?

Moving particle: linear momentum
circulating on lines.
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Are three updates enough for molecular rotations?

Moving particle: linear momentum Rotating particle: angular momentum
circulating on lines. circulating on lines.
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At higher orders the problem gets worse!

The configuration space is bigger! Another update is needed to cover it.

Shuffle update: select one 1-particle-irreducible component, shuffle the
momenta couplings to another allowed configuration.
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The ground-state energy of the angulon Hamiltonian obtained using DiagMC* as
a function of the dimensionless bath density, /1, in comparison with the
weak-coupling theory? and the strong-coupling theory3.

The energy is obtained by
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GB, TV. Tscherbul, M. Lemeshko, Phys. Rev. Lett. 121, 165301 (2018).
2R. Schmidt and M. Lemeshko, Phys. Rev. Lett. 114, 203001 (2015).
3R. Schmidt and M. Lemeshko, Phys. Rev. X 6, 011012 (2016).
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Conclusions

« A numerically-exact approach to quantum many-body systems involving
coupled angular momenta.

« Works in continuous time and in the thermodynamic limit: no finite-size
effects or systematic errors.

« Future perspectives:

+ More advanced schemes (e.g. ¥, bold).

« More realistic systems, such as molecules and molecular clusters in superfluid
helium nanodroplets.

« Hybridisation of translational and rotational motion.

+ Real-time dynamics?
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Backup slide # 1

Free rotor propagator Go v (E) = 1
oE) = £= BA(A +1) +i6

[Ux(K)*

Interaction propagator E) —
X/\( ) Z E—wg+1id
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