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Introduction: coupled interacting systems

A system consisting of smaller subsystems, connected via a tunable coupling.

• Josephson junction between
coupled superconductors or
Bose-Einstein condensates.

• The droplet phase in bosonic
mixtures.

• Lattice spin models: magnetic
spin ladders and layered
two-dimensional systems.

Image from: Wikimedia Commons

Are there new phases? How can we find them, if we don’t know a priori the order
parameter driving the transition?
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This talk: I will demonstrate a
machine-learning approach that can answer
the question for classical, two-dimensional,
layered square-lattice spin models.

Based on: W. Rządkowski, N. Defenu, S. Chiacchiera, A. Trombet-
toni, GB, New J. Phys. 22, 093026 (2020).
Image from: S. Wald, PhD thesis (2017).



Convolutional neural networks: a power tool for classification problems

Fully connected neural networks do not work very well for image classification.
Inspired by the visual cortex in human brain, convolutional neural network (CNN)
use a locally connected part, followed by a fully connected one.

Image from: Sumit Saha, Towards Data Science

The convolution operation aims at extracting the
higher level features from the image (i.e. edges,
crossings, etc...). Example: MNIST.

It exploits local spatial correlations, while also
making the process translationally invariant.

Very flexible at identifying patterns! Incidentally, this
also makes CNNs good for the game of go! Image from: Wikimedia Commons 3/18



Convolutional neural networks: the convolution operation

The locally connected part of a CNN (usually) consists in the repeated application
of the convolution and pooling operation.

Convolution operation: in the example
on the right we have a 5 × 5 image
(green), convoluted with a 3 × 3 kernel
(yellow), resulting in a 3 × 3 feature
map.

The kernel entries are parameters to
be optimized during the training of the
network.

The convolution operation:
• Aims at turning the image into a
feature map of high level features.

• Subsequent convolutional layers
compose higher level features,
reconstructing whole objects.

Image credit: Sumit Saha, Towards Data Science
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Convolutional neural networks: the pooling operation

Pooling operation: here we have a
5 × 5 feature map (orange), pooled via
a 3 × 3 kernel, resulting in a 3 × 3
ouput (cyan).

No kernel here, just an aggregation
function applied to values (maximum,
average, etc...). Hence, no parameters
are involved.

The pooling operation aims at:
• Reducing the size of the data.
• Keeping only the most relevant
features (which are translationally
invariant).

• Suppressing the noise.

Image credit: Sumit Saha, Towards Data Science

The last pooling operation is usually followed by one or more fully con-
nected layers for classification.
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Convolutional neural networks: applications

Image from: Sumit Saha, Towards Data Science

• Classification of images and videos.
• Natural language processing.
• Financial time series.
• Medical imaging.
• ...

Applications in physics (among many others): locating a phase transition?
Does it work also for composite or hidden order parameters?

6/18



Convolutions neural networks for multi-layer spin models: the problem

We consider a spin system whose Hamiltonian is defined by two parameters, J
and K. For consistency let us consider a classical, two-dimensional Ising bilayer

Hbilayer = −J
∑
⟨ij⟩

σiσj − J
∑
⟨ij⟩

τiτj − K
∑

i
σiτi

where σi, τi = ±1 are Ising variables on a two-dimensional square lattice.

We generate a large number (600) of uncorrelated Monte Carlo snapshots of the
model at equilibrium on a 32 × 32 × 2 lattice, having fixed βJ and βK.

Two-dimensional (discretized)
phase diagram

J: intra-layer coupling
K: inter-layer coupling

For each (J,K) point, the configuration of the
snapshots are encoded into binary samples of
shape 32 × 32 × 2.

Assign a phase to each point:
• Not knowing the number of phases.
• Not knowing the properties of each phase. 7/18



Convolutions neural networks for multi-layer spin models: the algorithm (1/2)

1. For each (J,K) point divide the data into
80% training & 20% validation.

2. For each pair of nearby points (J1,K1),
(J2,K2) attempt training the CNN.

3. Calculate quasidistance between (J1,K1)

and (J2,K2) based on the training
outcome. Training fails: same phase.
Training succeeds: different phases.

More precisely: we quantify the classification accuracy on the validation
set as the fraction φ of correctly labeled examples from the validation
set. Learning from confusion! We introduce the following quasidistance
between the two phase diagram points (J1,K1) and (J2,K2):

d((J1,K1), (J2,K2)) = 2(φ− 0.5)Θ(φ− 0.5) ,

where Θ(x) is the Heavyside step function. Perfect discrimination φ = 1
(signaling different phases) corresponds to d = 1, while perfect confusion
φ = 0.5 (signaling the same phase) corresponds to d = 0. 8/18



Convolutions neural networks for multi-layer spin models: the algorithm (2/2)

4. Based on the quasidistances, calculate and plot the lattice Laplacian.

More in detail: we make use of the quasi-distances to construct a field
u(J,K) defined through its finite-difference lattice gradient

∇u(J,K) =

(
(u(J +∆J,K)− u(J,K))/∆J
(u(J,K +∆K)− u(J,K))/∆K

)
≡

(
d((J +∆J,K), (J,K))/∆J
d((J,K +∆K), (J,K))/∆K

)

Clearly,∇uwill be constant in phase diagram regions belonging to the same
phase, since we expect that the difficulty of telling first neighbors apart
should be uniformly quite high. On the other hand, we expect the value
of ∇u to abruptly change in the vicinity of a phase transition. It is then
natural to introduce the finite-difference lattice Laplacian

∇2u(J,K) ≈ 1
(∆J)2

n∑
i=0

(−1)i

(
n
i

)
u(J + (n/2 − i)∆J),K) + (same for K)

with the n = 2, n = 3 and n = 4 cases corresponding to a 5-point, 9-point
or 13-point stencil, respectively.
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Incidentally (or not?): a connection with quantum fidelity!

Define |Ψ0(λ)⟩ as the ground state of a system, whose Hamil-
tonian depends on a parameter λ, and consider the quantum
fidelity defined as

| ⟨Ψ0(λ)|Ψ0(λ+ δλ)⟩ |2 ≈ 1 − (δλ)2

2 χF

and the fidelity susceptibility χF diverges at a phase transition.
For a review of this method, see: S.-J. Gu, Int. J. Mod. Phys. B 24, 4371 (2010).



Ising bilayer: phase diagram

• Finally, the reconstructed
phase diagram is immediately
visualized from the plot of
the lattice Laplacian ∇2u as a
function of βJ and βK.

• Expected behaviour for the
classical Ising bilayer:
ordered and unordered
phases.

• Limiting values in agreement
with the classical analytical
result by Onsager (βJ)c =

log
(

1 +
√

2
)
/2 ≈ 0.44.
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Ising trilayer: phase diagram

Next, we consider a trilayer system, whose Hamiltonian is:

Htrilayer = −J
∑
⟨ij⟩

σiσj − J
∑
⟨ij⟩

τiτj − J
∑
⟨ij⟩

υiυj − K
∑

i
σiτi − K

∑
i
τiυi ,

and we apply the same procedure to characterize its phase diagram.

• In the uncoupled limit (βK → 0) one
sees (βJ)c ≈ 0.44 in good agreement
with the famous analytical result by
Onsager (βJ)c = log

(
1 +

√
2
)
/2.

• The strong-interlayer-coupling critical
temperature is (βJ)′′c = (βJ)c/3.

• We see no evidence of other phases,
besides the ‘usual’ ordered an
unordered phases.

11/18



Ashkin-Teller model: an exactly solvable model with a composite order

The Ashkin-Teller model: a composite order parameter by construction.

HAT = −J
∑
⟨ij⟩

σiσj − J
∑
⟨ij⟩

τiτj − K
∑
⟨ij⟩

σiσjτiτj

The Ashkin-Teller model features a rich phase diagram, and remarkably in two
dimensions can be studied analytically1. Here we consider the case of
ferromagnetic couplings, J,K ≥ 0, that already sports three different phases:

• An ordered phase, denoted by I, characterized
by ⟨σ⟩ ̸= 0 ̸= ⟨τ⟩.

• A disordered phase, II, characterized by
⟨σ⟩ = ⟨τ⟩ = 0.

• Remarkably, one also finds the peculiar phase
III in which the single spins σ and τ are
disordered, whereas a composite order
parameter given by their product is
ferromagnetically ordered, i.e. ⟨στ⟩ ̸= 0.

1R. J. Baxter, “Exactly Solved Models in Statistical Mechanics”, Dover book on physics (Dover Publications, 2007).
12/18



Ashkin-Teller model: phase diagram

The previous investigation of Ising-like
models makes us confident we can identify
phase I and phase II, however it is not a priori
clear that phase III can be correctly identified.

MC snapshots show disordered spins both in
phase II and in phase III, the transition being
determined by the στ composite variable,
that we do not directly feed to the CNN. In
order to learn the existence of the II-III phase
transition the CNN must learn to reconstruct
the composite order parameter.

We can compare the phase diagram we
obtain with some exact results, marked by
diamonds of different colors.

13/18



Robustness of the approach: finite size effects

We characterize each phase transition through the full width at half maximum of
the peak in the reconstructed phase diagram (ML) or in the magnetic
susceptibility (raw MC data). ML vs. standard approach.

FWHM = 2
√

2 ln 2σ ≈ 2.35σ

Image credit: W. R. Leo, “Statistics and the treatment of experimental data”, Springer-Verlag, 1992.
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Robustness of the approach: signal to noise ratio

Our approach is able to obtain a phase diagram of quality high enough to visually
identify different phases.

We now characterize our method by quantifying signal to noise ratio (SNR) and
studying its behavior when essential (hyper)-parameters are changed. We define
the SNR as

SNR ≡ log10

(
1
N
∑

i(xi − ν)2

ν2

)
,

xi being the values of the ∇2u field, the
summation extending over a region
containing N values, ν being the ‘noise’, i.e.
the average value of ∇2u in a subset of the
region far away from a phase transition.

We consider:
• # of training epochs.
• # of samples.
• # of convolutional filter.
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Outlook: beyond Ising-like models, other layered systems

Classical bilayer XY model: BKT-paired phase.

H = −J
∑
⟨ij⟩

cos (ϕi − ϕj)− J
∑
⟨ij⟩

cos (ψi − ψj)− K
∑

i
cos (ϕi − ψi)

c↑(k) =
∑

|i−j|=k

exp(iϕi − iϕj)

z(k) =
∑

|i−j|=k

exp(iϕi + iψi − iϕj − iψj)

GB, N. Defenu, I. Nándori, L. Salasnich, A. Trombettoni, Phys. Rev. Lett.
123, 100601 (2019).

Bond percolation on two-dimensional
multilayers: p is the activation probability for
intra-layer bonds, while pperp is the activation
probability for inter-layer bonds.

GB, A. Trombettoni, N. Defenu, “Phase diagram of multilayer
percolation”, in preparation.
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Conclusions and future perspectives

• Our work demonstrates that ML approaches are able to learn the order
parameter driving a phase transition in layered models, also when this
parameter is not immediately apparent from the snapshots without
preprocessing.

• This is directly possible due to the convolutional filters which are, without
any a priori knowledge, capable of learning even involved algebraic
operations that uncover the order parameters from the data.

• This paves the way for the use of ML approaches to investigate the properties
of systems of increasing complexity and to characterizing phases of matter
described by multiple, possibly non-local order parameters.

• Our results pave the way for fully automated study of phase diagrams of
more general and complicated spin systems.

• Open questions: explainable artificial intelligence (XAI), fidelity.
W. Rządkowski, N. Defenu, S. Chiacchiera, A. Trombettoni, GB, New J. Phys. 22, 093026 (2020).

GB, N. Defenu, I. Nándori, L. Salasnich, A. Trombettoni, Phys. Rev. Lett. 123, 100601 (2019).

GB, A. Trombettoni, N. Defenu, “Phase diagram of multilayer percolation”, in preparation.
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Thank you for your attention.
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