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Outline

• Introduction and motivation: BCS-BEC crossover in 2D.

• Theoretical description of a 2D Fermi gas: mean-field and Gaussian
fluctuations.

• The role of fluctuations: the composite boson limit.

• Results and comparison with experimental data:

� First sound
� Second sound
� Berezinskii-Kosterlitz-Thouless critical temperature.

Main reference: GB and L. Salasnich, arXiv:1507.07542.
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The BCS-BEC crossover (1/2)

In 2004 the BCS-BEC crossover has been observed with ultracold
gases made of fermionic 40K and 6Li alkali-metal atoms. The
fermion-fermion attractive interaction can be tuned (using a Feshbach
resonance), from weakly to strongly interacting.

BCS regime: weakly interacting
Cooper pairs.

BEC regime: tightly bound
bosonic molecules.
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The BCS-BEC crossover (2/2)

An additional laser confinement can
used to create a quasi-2D pancake
geometry. The 2D scattering length
is determined by the geometry1:
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In 2014 the 2D BCS-BEC crossover
has been achieved1 with a quasi-2D

Fermi gas of

6

Li atoms with
widely tunable s-wave interaction.
The pressure P vs the gas parameter
a
B

n1/2 has been measured.

1V. Makhalov, K. Martiyanov, and A. Turlapov, PRL 112, 045301 (2014).
2`z is the thickness of each layer.

4 of 21



The BCS-BEC crossover in 2D (1/2)

Many properties of 2D Fermi gases are currently being studied:
•
Imaging of the atomic cloud

1

.

• Phase diagram1.
• Very recently (June 2015) the direct observation of the BKT
transition has been reported2.

• Dynamical properties: sound velocity.

trapping
beams

imaging
beam

camera

1M. G. Ries et al., Phys. Rev. Lett. 114, 230401 (2015)
2P. A. Murthy et al., Phys. Rev. Lett. 115, 010401 (2015).
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The BCS-BEC crossover in 2D (1/2)

Many properties of 2D Fermi gases are currently being studied:

• Imaging of the atomic cloud1.
•
Phase diagram

1

.

• Very recently (June 2015) the direct observation of the BKT
transition has been reported2.
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1M. G. Ries et al., Phys. Rev. Lett. 114, 230401 (2015)
2P. A. Murthy et al., Phys. Rev. Lett. 115, 010401 (2015).
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1M. G. Ries et al., Phys. Rev. Lett. 114, 230401 (2015)
2P. A. Murthy et al., Phys. Rev. Lett. 115, 010401 (2015).
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The BCS-BEC crossover in 2D (2/2)

Why is the 2D case interesting from the theory point of view?

• The fluctuations are more relevant for lower dimensionalities. The
mean field theory can correctly describe (to some extent) the
crossover in 3D, we expect it not to work at all in 2D.

• Berezinskii-Kosterlitz-Thouless mechanism:

� Mermin-Wagner-Hohenberg theorem: no condensation at finite
temperature, no o↵-diagonal long-range order.

� Algebraic decay of correlation functions hexp(i✓(r)) exp(i✓(0))i ⇠ |r|�⌘

� Transition to the normal state at a finite temperature TBKT .

• The physics of the BCS-BEC crossover is also relevant in the
description of many di↵erent systems (bilayers of dipolar gases,
exciton condensates). It may also be relevant for the description of
high-T

c

cuprates as the scaled correlation length (k
F

⇠
0

⇠ 5 for YBCO
and k

F

⇠
0

⇠ 10 for LSCO) lies between the BCS (k
F

⇠
0

⇠ 103) and
BEC (k

F

⇠
0

⌧ 1) regimes.
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Formalism for a D-dimensional Fermi superfluid (1/4)

We adopt the path integral formalism. The partition function Z of the
uniform system with fermionic fields  

s

(r, ⌧) at temperature T , in a
D-dimensional volume LD, and with chemical potential µ reads

Z =

Z
D[ 

s

,  ̄
s

] exp

⇢
�1

~ S

�
,

where (� ⌘ 1/(k
B

T ) with k
B

Boltzmann’s constant)

S =

Z ~�

0

d⌧

Z

L

D

dDr L

is the Euclidean action functional with Lagrangian density:

L =  ̄
s


~@

⌧

� ~2
2m

r2 � µ

�
 
s

+ g
0

 ̄"  ̄#  #  "

where g
0

is the attractive strength (g
0

< 0) of the s-wave coupling.
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Formalism for a D-dimensional Fermi superfluid (2/4)

In 2D the strength of the attractive s-wave potential is g
0

< 0, which can
be implicitely related to the bound state energy:

� 1

g
0

=
1

2L2

X

k

1

✏
k

+ 1

2

✏
b

.

with ✏
k

= ~2k2/(2m). In 2D, as opposed to the 3D case, a bound state
exists even for arbitrarily weak interactions, making ✏

B

a good variable
to describe the whole BCS-BEC crossover.

The binding energy ✏
b

and the fermionic (2D) scattering length a
2D

are
related by the equation2:

✏
B

=
4~2

e2�ma2
2D

2C. Mora and Y. Castin, Phys. Rev. A 67, 053615 (2003).
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Formalism for a D-dimensional Fermi superfluid (3/4)

Through the usual
Hubbard-Stratonovich
transformation the Lagrangian
density L, quartic in the

fermionic fields, can be rewritten as a quadratic form by introducing the
auxiliary complex scalar field �(r, ⌧) so that:
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Z
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e

( 
s

,  ̄
s

,�, �̄)

~

�
,

where

S
e

( 
s

,  ̄
s

,�, �̄) =

Z ~�

0

d⌧

Z

L

D

dDr L
e

( 
s

,  ̄
s

,�, �̄)

and the (exact) e↵ective Euclidean Lagrangian density L
e

( 
s

,  ̄
s

,�, �̄)
reads

L
e
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.
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Formalism for a D-dimensional Fermi superfluid (4/4)

We want to investigate the e↵ect of fluctuations of the pairing field
�(r, t) around its saddle-point value �

0

which may be taken to be real.
For this reason we set

�(r, ⌧) = �
0

+ ⌘(r, ⌧) ,

where ⌘(r, ⌧) is the complex field which describes pairing fluctuations.
In particular, we are interested in the grand potential ⌦, given by
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�
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is the partition function of Gaussian pairing fluctuations.
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Single particle and collective excitations

One finds that in the gas of paired fermions there are two kinds of
elementary excitations: fermionic single-particle excitations with energy

E
sp

(k) =

s✓
~2k2
2m

� µ

◆
2

+�2

0

,

where �
0

is the pairing gap, and bosonic collective excitations with
energy

E
col

(q) =

s
~2q2
2m

✓
�

~2q2
2m

+ 2mc2
s

◆
,

where � is the first correction to the familiar low-momentum phonon
dispersion E

col

(q) ' c
s

~q and c
s

is the sound velocity.
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The role of Gaussian fluctuations and collective
excitations: composite bosons

In the strongly interacting limit an attractive
Fermi gas maps to a gas of composite bosons
with chemical potential µ

B

= 2(µ+ ✏
b

/2) and
mass m

B

= 2m. Residual interaction.
Is this limit correctly recovered3 at mean-field?
And at a Gaussian level?

Gaussian fluctuations are crucial in correctly describing the prop-
erties of a 2D Fermi gas in the BEC limit (boson-boson scattering
length, equation of state). What can be said about the sound ve-
locity and the BKT critical temperature?

1L. Salasnich and F. Toigo, Phys. Rev. A 91, 011604(R) (2015)
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Regularization

The contribution from
fluctuations does not
converge:

⌦
g

=
1

2

X

q

E
col

(q)

 
Many regularization schemes:

• Dimensional regularization
Analytical results

4

in the BEC limit

in 2D

• Counterterms regularization
Analytical results

5

in the BEC limit

in 3D

• Convergence factor regularization
Numerics for the whole

crossover

6,7

.
4L. Salasnich and F. Toigo, Phys. Rev. A 91, 011604(R) (2015).
5L. Salasnich and GB, Phys. Rev. A 91, 033610 (2015).
6R. B. Diener, R. Sensarma, and M. Randeria, Phys. Rev. A 77, 023626 (2008)
7L. He, H. Lü, G. Cao, H. Hu and X.-J. Liu, arXiv:1506.07156
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First sound velocity (1/2)

It can be read from the collective excitations spectrum:

E
col

(q) =

s
~2q2
2m

✓
�

~2q2
2m

+ 2mc
s

2

◆
' c

s

~q

The sound velocity at T = 0 can be
calculated through the
thermodynamics formula:

c
s

=

r
n

m

@µ

@n

We compare our result with the
“mean-field” result, with the
composite boson limit and with
experimental data1.

1N. Luick, M.Sc. thesis, University of Hamburg (2014).
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First sound velocity (2/2)

• In the BEC limit c
s

is strongly
a↵ected by the Gaussian
equation of state.

• The temperature dependence
(inset) is very weak.

• Strong coupling: composite
boson limit.

c2
s

=
8⇡~2
m

B

m
B

ln
⇣

1

n

B

a

2

B

⌘

• Quite good agreement with
(preliminary) experimental
data.
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BKT critical temperature (1/3)

The BKT critical temperature is found using the Kosterlitz-Nelson (KN)
condition:

k
B

T
BKT

=
~2⇡
8m

n
s

(T
BKT

)

The superfluid density is obtained using Landau’s quasiparticle
excitations formula for fermionic and bosonic excitations:

n
n,f

= �

Z
d2k

(2⇡)2
k2

e�Ek

(e�Ek + 1)2
and n

n,b

=
�

2

Z
d2q

(2⇡)2
q2

e�!q

(e�!q � 1)2
,

then n
s

= n� n
n,f

� n
n,b

.
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BKT critical temperature (2/3)

•
Approximation: the single-particle and collective contributions are
not independent, as there is hybridization due to Landau damping.
Strictly speaking the bosonic contribution to n

n

should be8:

nn,b = �
m

�

X

q

1
⇣
detM̃

⌘2

2

4detM̃
 
@2 detM̃
@Q2

!

µ̃

�
 
@ detM̃
@Q

!2

µ̃

3

5

Q!0

It reduces to the simpler form seen before in the low-temperature
limit, being most relevant at k

B

T ⇠ ✏
F

. In 2D below T
BKT

k
B

T . 0.125✏
F

and the hybridization can be safely ignored.

•
Composite boson limit: Combining a

B

= 1

2

1/2

e

1/4

a
F

,

✏
B

= 4

e

2�

~2

ma

F

2

we get:

✏B
✏F

=


nBa2B
 ' 0.061

The strongly interacting Fermi gas maps to a dilute Bose gas of dimers.
8E. Taylor, A. Gri�n, N. Fukushima, Y. Ohashi, Phys. Rev. A 74, 063626 (2006)

17 of 21



BKT critical temperature (3/3)

We can compare the theory with very recently obtained experimental
data9:

• Within error bars for ✏
B

/✏
F

& 1

• Worse agreement for ✏
B

/✏
F

. 1

• In the strong coupling limit the
KN condition leads to:

k
B

T
BKT

⇡ µ
2

3

B

✏
1

3

F

3

p
12⇣(3)

�8

3

µ
4

3

B

✏
� 1

3

F

(12⇣(3))
2

3

Caveat: non-2D geometry of the trap.

1P. A. Murthy et al., Phys. Rev. Lett. 115, 010401 (2015).
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Second sound velocity

A superfluid can also sustain the second
sound (entropy wave as opposed to density
wave). Using the same approximation as
before, we model the free energy as:

F
sp

= � 2

�

X

k

ln
h
1 + e��E

sp

(k)

i

F
col

=
1

�

X

q

ln
h
1� e��E

col

(q)

i

The second sound velocity is readily calculated from the entropy as:

S = �(@F/@T )
N,L

2 c
2

=

vuut
1

m

S̄2

⇣
@

¯

S
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⌘

N,L

2

n
s

n
n
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Conclusions

• The theoretical treatment of a 2D Fermi gas needs the inclusion of
Gaussian fluctuations, which in turn require a proper regularization.

• This approach shows good agreement with experimental data (BKT
critical temperature, first sound), other predictions are open to
verification (second sound): two-dimensional BCS-BEC is a young
field.

• This treatment can be extended to 2D systems with BCS-like pairing
(bilayers of polar molecules, exciton condensates, etc.)
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Thanks for your attention.
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