Diagrammatic Monte Carlo approach to angular momentum in quantum many-body systems

Giacomo Bighin
Institute of Science and Technology Austria

Workshop on "Polarons in the 21st century", ESI, Vienna, December 10th, 2019

Rotations in a many-body environment

Rotations in a many-body environment and rotating impurities:

Rotations in a many-body environment

Rotations in a many-body environment and rotating impurities:

Molecular physics/chemistry:
molecules embedded into helium nanodroplets.

J. P. Toennies and A. F. Vilesov, Angew. Chem. Int. Ed. 43, 2622 (2004).

Condensed matter: rotating molecules inside a 'cage' in perovskites.

C. Eames et al, Nat. Comm. 6, 7497 (2015).

Ultracold matter: molecules and ions in a BEC.

B. Midya, M. Tomza, R. Schmidt, and M. Lemeshko, Phys. Rev. A 94, 041601(R) (2016)./13

Rotations in a many-body environment

Rotations in a many-body environment and rotating impurities:

Molecular physics/chemistry: molecules embedded into helium nanodroolets.

Questions:

d. 43, 2622 (2004).

- How to describe rotations in a many-body

Condensed molecules ir perovskites. environment in terms of Feynman diagrams?

- How to sample these diagrams at all orders using Diagrammatic Monte Carlo?

```
m. 6, 7497 (2015).
```

Ultracold matter: molecules and ions in a BEC.

B. Midya, M. Tomza, R. Schmidt, and M. Lemeshko, Phys. Rev. A 94, 041601(R) (2016)./13

Feynman diagrams

The angulon Hamiltonian:

$$
\hat{H}=\underbrace{B \hat{\jmath}^{2}}_{\text {molecule }}+\underbrace{\sum_{k \lambda \mu} \omega_{k} \hat{b}_{k \lambda \mu}^{\dagger} \hat{b}_{k \lambda \mu}}_{\text {phonons }}+\underbrace{\sum_{k \lambda \mu} U_{\lambda}(k)\left[Y_{\lambda \mu}^{*}(\hat{\theta}, \hat{\phi}) \hat{b}_{k \lambda \mu}^{\dagger}+Y_{\lambda \mu}(\hat{\theta}, \hat{\phi}) \hat{b}_{k \lambda \mu}\right]}_{\text {molecule-phonon interaction }}
$$

Feynman diagrams

The angulon Hamiltonian:

$$
\hat{H}=\underbrace{B \hat{\jmath}^{2}}_{\text {molecule }}+\underbrace{\sum_{k \lambda \mu} \omega_{k} \hat{b}_{k \lambda \mu}^{\dagger} \hat{b}_{k \lambda \mu}}_{\text {phonons }}+\underbrace{\sum_{k \lambda \mu} U_{\lambda}(k)\left[Y_{\lambda \mu}^{*}(\hat{\theta}, \hat{\phi}) \hat{b}_{k \lambda \mu}^{\dagger}+Y_{\lambda \mu}(\hat{\theta}, \hat{\phi}) \hat{b}_{k \lambda \mu}\right]}_{\text {molecule-phonon interaction }}
$$

Feynman diagrams and perturbation theory:

How does angular momentum enter this picture?

Feynman diagrams

The angulon Hamiltonian:

$$
\hat{H}=\underbrace{B \hat{\jmath}^{2}}_{\text {molecule }}+\underbrace{\sum_{k \lambda \mu} \omega_{k} \hat{b}_{k \lambda \mu}^{\dagger} \hat{b}_{k \lambda \mu}}_{\text {phonons }}+\underbrace{\sum_{k \lambda \mu} U_{\lambda}(k)\left[Y_{\lambda \mu}^{*}(\hat{\theta}, \hat{\phi}) \hat{b}_{k \lambda \mu}^{\dagger}+Y_{\lambda \mu}(\hat{\theta}, \hat{\phi}) \hat{b}_{k \lambda \mu}\right]}_{\text {molecule-phonon interaction }}
$$

Feynman diagrams and perturbation theory:

Fröhlich polaron

Feynman diagrams

The angulon Hamiltonian:

$$
\hat{H}=\underbrace{B \hat{\jmath}^{2}}_{\text {molecule }}+\underbrace{\sum_{k \lambda \mu} \omega_{k} \hat{b}_{k \lambda \mu}^{\dagger} \hat{b}_{k \lambda \mu}}_{\text {phonons }}+\underbrace{\sum_{k \lambda \mu} U_{\lambda}(k)\left[Y_{\lambda \mu}^{*}(\hat{\theta}, \hat{\phi}) \hat{b}_{k \lambda \mu}^{\dagger}+Y_{\lambda \mu}(\hat{\theta}, \hat{\phi}) \hat{b}_{k \lambda \mu}\right]}_{\text {molecule-phonon interaction }}
$$

Feynman diagrams and perturbation theory:

Angulon

Feynman diagrams

The angulon Hamiltonian:

$$
\hat{H}=\underbrace{B \hat{j}^{2}}_{\text {molecule }}+\underbrace{\sum_{k \lambda \mu} \omega_{k} \hat{b}_{k \lambda \mu}^{\dagger} \hat{b}_{k \lambda \mu}}_{\text {phonons }}+\underbrace{\sum_{k \lambda \mu} U_{\lambda}(k)\left[Y_{\lambda \mu}^{*}(\hat{\theta}, \hat{\phi}) \hat{b}_{k \lambda \mu}^{\dagger}+Y_{\lambda \mu}(\hat{\theta}, \hat{\phi}) \hat{b}_{k \lambda \mu}\right]}_{\text {molecule-phonon interaction }}
$$

Feynman diagrams and perturbation theory:

> How does angular momentum enter
here?

Feynman rules

Each free propagator

$\lambda_{i} \mu_{i}$

$$
\sum_{\lambda_{i} \mu_{i}}(-1)^{\mu_{i}} G_{0, \lambda_{i}}
$$

Each phonon propagator

$$
\sum_{\lambda_{i} \mu_{i}}(-1)^{\mu_{i} D_{\lambda_{i}}}
$$

Each vertex

$$
(-1)^{\lambda_{i}}\left\langle\lambda_{i}\right|\left|r^{\left(\lambda_{j}\right)}\right|\left|\lambda_{k}\right\rangle\left(\begin{array}{lll}
\lambda_{i} & \lambda_{j} & \lambda_{k} \\
\mu_{i} & \mu_{j} & \mu_{k}
\end{array}\right)
$$

GB and M. Lemeshko, Phys. Rev. B 96, 419 (2017).

Usually momentum conservation is enforced by an appropriate labeling.

Not the same for angular momentum, j and λ couple to
$|j-\lambda|, \ldots, j+\lambda$.

Feynman rules

Each free propagator

$\xrightarrow{\lambda_{i} \mu_{i} \longrightarrow}$

$$
\sum_{\lambda_{i} \mu_{i}}(-1)^{\mu_{i}} G_{0, \lambda_{i}}
$$

Each phonon propagator

$$
\lambda_{i} \mu_{i} \longrightarrow-\quad-\quad
$$

$$
\sum_{\lambda_{i} \mu_{i}}(-1)^{\mu_{i}} D_{\lambda_{i}}
$$

Each vertex

$$
(-1)^{\lambda_{i}}\left\langle\lambda_{i}\right|\left|\gamma^{\left(\lambda_{j}\right)}\right|\left|\lambda_{k}\right\rangle\left(\begin{array}{lll}
\lambda_{i} & \lambda_{j} & \lambda_{k} \\
\mu_{i} & \mu_{j} & \mu_{k}
\end{array}\right)
$$

GB and M. Lemeshko, Phys. Rev. B 96, 419 (2017).
Diagrammatic theory of angular momentum (developed in the context of theoretical atomic spectroscopy)

$$
\begin{aligned}
& \left\{\begin{array}{lll}
f_{1} & f_{2} & f_{3} \\
I_{23} & I_{31} & J_{13}
\end{array}\right\} \sum_{m_{1} m_{2} m_{2}}\left(\begin{array}{ccc}
f_{1} & f_{2} & f_{3} \\
m_{1} & m_{3} & m_{2}
\end{array}\right) D_{m_{1} m_{1}^{\prime}}^{y_{1}}\left(R_{2}\right) D_{m_{1} m_{1}^{\prime}}^{f_{1}}\left(R_{2}\right) D_{m_{2} m_{2}}^{f_{1}}\left(R_{3}\right)
\end{aligned}
$$

Angulon spectral function: first and second order

Self-energy (first order)

Dyson equation

Self-energy (second order)

GB and M. Lemeshko, Phys. Rev. B 96, 419 (2017).

What about higher orders?

At order n : n integrals, and higher angular momentum couplings ($3 n-j$ symbols).

Diagrammatic Monte Carlo

Numerical technique for summing all Feynman diagrams ${ }^{1}$.

$+$

Usually: structureless particles (Fröhlich polaron, Holstein polaron), or particles with a very simple internal structure (e.g. spin $1 / 2$).

Molecules²? Connecting DiagMC and molecular simulations!

[^0]
Diagrammatic Monte Carlo

Hamiltonian for an impurity problem: $\hat{H}=\hat{H}_{\text {imp }}+\hat{H}_{\text {bath }}+\hat{H}_{\text {int }}$

Green's function

DiagMC idea: set up a stochastic process sampling among all diagrams ${ }^{1}$. Configuration space: diagram topology, phonons internal variables, times, etc... Number of variables varies with the topology!

How: ergodicity, detailed balance $w_{1} p(1 \rightarrow 2)=w_{2} p(2 \rightarrow 1)$
Result: each configuration is visited with probability \propto its weight.
${ }^{1}$ N. V. Prokof'ev and B. V. Svistunov, Phys. Rev. Lett. 81, 2514 (1998).

Diagrammatic Monte Carlo

Hamiltonian for an impurity problem: $\hat{H}=\hat{H}_{\text {imp }}+\hat{H}_{\text {bath }}+\hat{H}_{\text {int }}$

Green's function

DiagMC idea Configuratio etc... Numbe

How: ergodi
Result: each

A Monte Carlo technique that works in second quantization.

Works in continuous time and in the thermodynamic limit: no finite-size effects or systematic errors.

[^1]
Updates

We need updates spanning the whole configuration space:

Updates

We need updates spanning the whole configuration space:
Add update: a new arc is added to a diagram.

Updates

We need updates spanning the whole configuration space:
Add update: a new arc is added to a
 diagram.

Updates

We need updates spanning the whole configuration space:
Add update: a new arc is added to a
 diagram.

Updates

We need updates spanning the whole configuration space:
Add update: a new arc is added to a
 diagram.
Remove update: an arc is removed from the diagram.

Updates

We need updates spanning the whole configuration space:
Add update: a new arc is added to a diagram.
Remove update: an arc is removed from the diagram.

Updates

We need updates spanning the whole configuration space:
Add update: a new arc is added to a diagram.
Remove update: an arc is removed from the diagram.
Change update: modifies the total length of the diagram.

Updates

We need updates spanning the whole configuration space:
Add update: a new arc is added to a diagram.
Remove update: an arc is removed from the diagram.
Change update: modifies the total length of the diagram.

Updates

We need updates spanning the whole configuration space:
Add update: a new arc is added to a diagram.
Remove update: an arc is removed from the diagram.
Change update: modifies the total length of the diagram.

Updates

We need updates spanning the whole configuration space:

Add update: a new arc is added to a diagram.
Remove update: an arc is removed from the diagram.
Change update: modifies the total length of the diagram.

Result: the time the stochastic process spends with diagrams of length τ will be proportional to $G(\tau)$. One can fill a histogram after each update and get the Green's function.

Diagrammatics for a rotating impurity

Moving particle: linear momentum circulating on lines.

Rotating particle: angular momentum circulating on lines.

Diagrammatics for a rotating impurity

Moving particle: linear momentum circulating on lines.

\vec{k} and \vec{q} fully determine $\vec{k}-\vec{q}$

Rotating particle: angular momentum circulating on lines.

Diagrammatics for a rotating impurity

Moving particle: linear momentum circulating on lines.

Rotating particle: angular momentum circulating on lines.

Higher order angular momentum composition!

Diagrammatics for a rotating impurity

Moving particle: linear momentum circulating on lines.

Rotating particle: angular momentum circulating on lines.

Higher order angular momentum composition!

Diagrammatics for a rotating impurity

Moving particle: linear momentum circulating on lines.

Rotating particle: angular momentum circulating on lines.

The configuration space is more complex... and bigger! We need an additional update.

Shuffle update: select one 1-particleirreducible component, shuffle the momenta $=4!j=2$ couplings to another allowed configuration.

DiagMC: results

The ground-state energy of the angulon Hamiltonian obtained using DiagMC ${ }^{1}$ as a function of the dimensionless bath density, \tilde{n}, in comparison with the weak-coupling theory ${ }^{2}$ and the strong-coupling theory ${ }^{3}$.

The energy and quasiparticle weight are obtained by fitting the long-imaginary-time behaviour of G_{j} with $G_{j}(\tau)=Z_{j} \exp \left(-E_{j} \tau\right)$.

Inset: energy of the $L=0,1,2$ states.

${ }^{1}$ GB, T.V. Tscherbul, M. Lemeshko, Phys. Rev. Lett. 121, 165301 (2018).
${ }^{2}$ R. Schmidt and M. Lemeshko, Phys. Rev. Lett. 114, 203001 (2015).
${ }^{3}$ R. Schmidt and M. Lemeshko, Phys. Rev. X 6, 011012 (2016).

DiagMC: results

The ground-state energy of the angulon Hamiltonian obtained using DiagMC ${ }^{1}$ as a function of the dimensionless bath density, \tilde{n}, in comparison with the weak-coupling theory ${ }^{2}$ and the strong-coupling theory ${ }^{3}$.

The energy and quasiparticle weight are obtained by fitting the long-imaginary-time behaviour of G_{j} with $G_{j}(\tau)=Z_{j} \exp \left(-E_{j} \tau\right)$.

Inset: energy of the $L=0,1,2$ states.

${ }^{1}$ GB, T.V. Tscherbul, M. Lemeshko, Phys. Rev. Lett. 121, 165301 (2018).
${ }^{2}$ R. Schmidt and M. Lemeshko, Phys. Rev. Lett. 114, 203001 (2015).
${ }^{3}$ R. Schmidt and M. Lemeshko, Phys. Rev. X 6, 011012 (2016).

Conclusions

- A description of rotations in a many-body environment in terms of Feynman diagrams and a numerically-exact approach to rotations in quantum many-body systems.
- Future perspectives:
- More advanced schemes (e.g. Σ, bold).
- More realistic systems, such as molecules and molecular clusters in superfluid helium nanodroplets.
- Hybridisation of translational and rotational motion.
- Real-time dynamics?

Thank you for your attention.

Institute of Science and Technology

FШF

Der Wissenschaftsfonds.

This work was supported by a Lise Meitner Fellowship of the Austrian Science Fund (FWF), project Nr. M2461-N27.

Backup slide \# 1

Free rotor propagator

$$
G_{0, \lambda}(E)=\frac{1}{E-B \lambda(\lambda+1)+\mathrm{i} \delta}
$$

Interaction propagator

$$
\chi_{\lambda}(E)=\sum_{k} \frac{\left|U_{\lambda}(k)\right|^{2}}{E-\omega_{k}+\mathrm{i} \delta}
$$

Backup slide \# 2

Backup slide \# 3

[^0]: ${ }^{1}$ N. V. Prokof'ev and B. V. Svistunov, Phys. Rev. Lett. 81, 2514 (1998).
 ${ }^{2}$ GB, T.V. Tscherbul, M. Lemeshko, Phys. Rev. Lett. 121, 165301 (2018).

[^1]: ${ }^{1}$ N. V. Prokof'ev and B. V. Svistunov, Phys. Rev. Lett. 81, 2514 (1998).

