Diagrammatic Monte Carlo approach to angular momentum in quantum many-body systems

Giacomo Bighin Institute of Science and Technology Austria

Workshop on "Polarons in the 21st century", ESI, Vienna, December 10th, 2019

Rotations in a many-body environment

Rotations in a many-body environment and rotating impurities:

Rotations in a many-body environment

Rotations in a many-body environment and rotating impurities:

Molecular physics/chemistry: molecules embedded into helium nanodroplets.

J. P. Toennies and A. F. Vilesov, Angew. Chem. Int. Ed. 43, 2622 (2004).

Condensed matter: rotating molecules inside a 'cage' in perovskites.

Ultracold matter: molecules and ions in a BEC.

C. Eames et al, Nat. Comm. 6, 7497 (2015).

B. Midya, M. Tomza, R. Schmidt, and M. Lemeshko, Phys. Rev. A 94, 041601(R) (2016)?/13

Rotations in a many-body environment

Rotations in a many-body environment and rotating impurities:

B. Midya, M. Tomza, R. Schmidt, and M. Lemeshko, Phys. Rev. A 94, 041601(R) (2016)-2/13

$$\hat{H} = \underbrace{B\hat{J}^{2}}_{\text{molecule}} + \underbrace{\sum_{k\lambda\mu} \omega_{k} \hat{b}^{\dagger}_{k\lambda\mu} \hat{b}_{k\lambda\mu}}_{\text{phonons}} + \underbrace{\sum_{k\lambda\mu} U_{\lambda}(k) \left[Y^{*}_{\lambda\mu}(\hat{\theta}, \hat{\phi}) \hat{b}^{\dagger}_{k\lambda\mu} + Y_{\lambda\mu}(\hat{\theta}, \hat{\phi}) \hat{b}_{k\lambda\mu}\right]}_{\text{molecule-phonon interaction}}$$

Feynman diagrams and perturbation theory:

How does angular momentum enter this picture?

Feynman diagrams and perturbation theory:

Fröhlich polaron

Feynman diagrams and perturbation theory:

Angulon

Usually momentum conservation is enforced by an appropriate labeling.

Not the same for angular momentum, *j* and λ couple to $|j - \lambda|, \dots, j + \lambda$. $\sum_{j'm'} \underbrace{jm}_{j'm'} \underbrace{jm}_{j'm'} \underbrace{jm}_{4/13}$

Diagrammatic theory of angular momentum (developed in the context of theoretical atomic spectroscopy)

from D. A. Varshalovich, A. N. Moskalev, V. K. Khersonskii, "Quantum Theory of Angular Momentum".

Angulon spectral function: first and second order

GB and M. Lemeshko, Phys. Rev. B 96, 419 (2017).

What about higher orders?

At order *n*: *n* integrals, and higher angular momentum couplings (3*n*-j symbols).

Diagrammatic Monte Carlo

Numerical technique for summing all Feynman diagrams¹.

Usually: structureless particles (Fröhlich polaron, Holstein polaron), or particles with a very simple internal structure (e.g. spin 1/2).

Molecules²? Connecting DiagMC and molecular simulations!

¹N. V. Prokof'ev and B. V. Svistunov, Phys. Rev. Lett. **81**, 2514 (1998).

²GB, T.V. Tscherbul, M. Lemeshko, Phys. Rev. Lett. **121**, 165301 (2018).

Diagrammatic Monte Carlo

DiagMC idea: set up a stochastic process sampling among all diagrams¹.

Configuration space: diagram topology, phonons internal variables, times, etc... Number of variables varies with the topology!

How: ergodicity, detailed balance $w_1p(1 \rightarrow 2) = w_2p(2 \rightarrow 1)$

Result: each configuration is visited with probability \propto its weight.

¹N. V. Prokof'ev and B. V. Svistunov, Phys. Rev. Lett. **81**, 2514 (1998).

Diagrammatic Monte Carlo

¹N. V. Prokof'ev and B. V. Svistunov, Phys. Rev. Lett. **81**, 2514 (1998).

Add update: a new arc is added to a diagram.

Add update: a new arc is added to a diagram.

Add update: a new arc is added to a diagram.

Add update: a new arc is added to a diagram. Remove update: an arc is removed from the diagram.

Add update: a new arc is added to a diagram. Remove update: an arc is removed from the diagram.

Add update: a new arc is added to a diagram. Remove update: an arc is removed from the diagram. Change update: modifies the total length of the diagram.

Add update: a new arc is added to a diagram. Remove update: an arc is removed from the diagram. Change update: modifies the total length of the diagram.

Add update: a new arc is added to a diagram. Remove update: an arc is removed from the diagram. Change update: modifies the total length of the diagram.

Add update: a new arc is added to a diagram. Remove update: an arc is removed from the diagram. Change update: modifies the total length of the diagram.

Result: the time the stochastic process spends with diagrams of length τ will be proportional to $G(\tau)$. One can fill a histogram after each update and get the Green's function.

Moving particle: linear momentum circulating on lines.

Rotating particle: angular momentum circulating on lines.

Moving particle: linear momentum circulating on lines.

Rotating particle: angular momentum circulating on lines.

Rotating particle: angular momentum circulating on lines.

Higher order angular momentum composition!

Rotating particle: angular momentum circulating on lines.

Higher order angular momentum composition!

DiagMC: results

The ground-state energy of the angulon Hamiltonian obtained using DiagMC¹ as a function of the dimensionless bath density, \tilde{n} , in comparison with the weak-coupling theory² and the strong-coupling theory³.

The energy and quasiparticle weight are obtained by fitting the long-imaginary-time behaviour of G_j with $G_j(\tau) = Z_j \exp(-E_j \tau)$.

Inset: energy of the L = 0, 1, 2 states.

¹GB, T.V. Tscherbul, M. Lemeshko, Phys. Rev. Lett. **121**, 165301 (2018). ²R. Schmidt and M. Lemeshko, Phys. Rev. Lett. **114**, 203001 (2015).

³R. Schmidt and M. Lemeshko, Phys. Rev. X 6, 011012 (2016).

DiagMC: results

The ground-state energy of the angulon Hamiltonian obtained using DiagMC¹ as a function of the dimensionless bath density, \tilde{n} , in comparison with the weak-coupling theory² and the strong-coupling theory³.

The energy and quasiparticle weight are obtained by fitting the long-imaginary-time behaviour of G_j with $G_j(\tau) = Z_j \exp(-E_j \tau)$.

Inset: energy of the L = 0, 1, 2 states.

¹GB, T.V. Tscherbul, M. Lemeshko, Phys. Rev. Lett. **121**, 165301 (2018).
²R. Schmidt and M. Lemeshko, Phys. Rev. Lett. **114**, 203001 (2015).
³R. Schmidt and M. Lemeshko, Phys. Rev. X **6**, 011012 (2016).

- A description of rotations in a many-body environment in terms of Feynman diagrams and a numerically-exact approach to rotations in quantum many-body systems.
- Future perspectives:
 - More advanced schemes (e.g. $\boldsymbol{\Sigma},$ bold).
 - More realistic systems, such as molecules and molecular clusters in superfluid helium nanodroplets.
 - Hybridisation of translational and rotational motion.
 - Real-time dynamics?

Thank you for your attention.

 $Institute \ of \ Science \ and \ Technology$

FШF

Der Wissenschaftsfonds.

This work was supported by a Lise Meitner Fellowship of the Austrian Science Fund (FWF), project Nr. M2461-N27. Free rotor propagator

$$G_{0,\lambda}(E) = rac{1}{E - B\lambda(\lambda + 1) + \mathrm{i}\delta}$$

Interaction propagator

$$\chi_{\lambda}(E) = \sum_{k} \frac{|U_{\lambda}(k)|^2}{E - \omega_k + \mathrm{i}\delta}$$