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Rotations in a many-body environment

Rotations in a many-body environment and rotating impurities:

Molecular physics/chemistry:
molecules embedded into
helium nanodroplets.

J. P. Toennies and A. F. Vilesov, Angew. Chem. Int. Ed. 43, 2622 (2004).

Condensedmatter: rotating
molecules inside a ‘cage’ in
perovskites.

C. Eames et al, Nat. Comm. 6, 7497 (2015).

Ultracold matter: molecules
and ions in a BEC.

B. Midya, M. Tomza, R. Schmidt, and M. Lemeshko, Phys. Rev. A 94, 041601(R) (2016).
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Questions:

• How to describe rotations in a many-body
environment in terms of Feynman
diagrams?

• How to sample these diagrams at all
orders using Diagrammatic Monte Carlo?



Feynman diagrams

The angulon Hamiltonian:

Ĥ = BĴ2︸︷︷︸
molecule

+
∑
kλµ

ωkb̂
†
kλµb̂kλµ︸ ︷︷ ︸

phonons

+
∑
kλµ

Uλ(k)
[
Y∗λµ(θ̂, ϕ̂)b̂

†
kλµ + Yλµ(θ̂, ϕ̂)b̂kλµ

]
︸ ︷︷ ︸

molecule-phonon interaction

Feynman diagrams and perturbation theory:
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How does angular momentum enter this picture?
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Feynman rules

Each free propagator ∑
λiµi

(−1)µiG0,λiλi µi

Each phonon propagator ∑
λiµi

(−1)µiDλiλi µi

Each vertex

(−1)λi ⟨λi| |Y(λj)| |λk⟩

(
λi λj λk

µi µj µk

)

GB and M. Lemeshko, Phys. Rev. B 96, 419 (2017).

Usually momentum conservation is
enforced by an appropriate labeling.

Not the same for angular
momentum, j and λ couple to
|j− λ|, . . . , j+ λ.

∑
j′m′ 4/13



Feynman rules

Each free propagator ∑
λiµi

(−1)µiG0,λiλi µi

Each phonon propagator ∑
λiµi

(−1)µiDλiλi µi

Each vertex

(−1)λi ⟨λi| |Y(λj)| |λk⟩

(
λi λj λk

µi µj µk

)

GB and M. Lemeshko, Phys. Rev. B 96, 419 (2017).

Diagrammatic theory of angular momentum (developed in the context of
theoretical atomic spectroscopy)

from D. A. Varshalovich, A. N. Moskalev, V. K. Khersonskii, “Quantum Theory of Angular Momentum”.
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Angulon spectral function: first and second order

Self-energy (first order)

=

Dyson equation

Self-energy (second order)

= +

GB and M. Lemeshko, Phys. Rev. B 96, 419 (2017). 5/13



What about higher orders?

= + +

+ + . . .+ +

+ . . .+ + . . .

At order n: n integrals, and higher angular momentum couplings (3n-j symbols).
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A lot to gain from connecting DiagMC and the theory of molecular simulations.



Diagrammatic Monte Carlo

Numerical technique for summing all Feynman diagrams1.

= + +

+ + …+ +

+…

Usually: structureless particles (Fröhlich polaron, Holstein polaron), or particles
with a very simple internal structure (e.g. spin 1/2).

Molecules2? Connecting DiagMC andmolecular simulations!

1N. V. Prokof’ev and B. V. Svistunov, Phys. Rev. Lett. 81, 2514 (1998).
2GB, T.V. Tscherbul, M. Lemeshko, Phys. Rev. Lett. 121, 165301 (2018).
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Diagrammatic Monte Carlo

Hamiltonian for an impurity problem: Ĥ = Ĥimp + Ĥbath + Ĥint

Green’s function

G(τ) = + +

+ + . . . = all Feynman diagrams

DiagMC idea: set up a stochastic process sampling among all diagrams1.

Configuration space: diagram topology, phonons internal variables, times,
etc... Number of variables varies with the topology!

How: ergodicity, detailed balancew1p(1 → 2) = w2p(2 → 1)

Result: each configuration is visited with probability∝ its weight.
1N. V. Prokof’ev and B. V. Svistunov, Phys. Rev. Lett. 81, 2514 (1998).
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A Monte Carlo technique that works in second
quantization.

Works in continuous time and in the thermody-
namic limit: no finite-size effects or systematic
errors.



Updates

We need updates spanning the whole configuration space:

Add update: a new arc is added to a
diagram.
Remove update: an arc is removed
from the diagram.
Change update: modifies the total
length of the diagram.

Result: the time the stochastic process spends with diagrams of length τ will be
proportional to G(τ). One can fill a histogram after each update and get the
Green’s function.
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Diagrammatics for a rotating impurity

Moving particle: linear momentum
circulating on lines.

Rotating particle: angular momentum
circulating on lines.

Higher order angular momentum composition!
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Diagrammatics for a rotating impurity

Moving particle: linear momentum
circulating on lines.

Rotating particle: angular momentum
circulating on lines.

Higher order angular momentum composition!

k⃗ and q⃗ fully deter-
mine k⃗− q⃗

j and λ can sum
in many different
ways: |j−λ|, . . . j+λ
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Diagrammatics for a rotating impurity

Moving particle: linear momentum
circulating on lines.

Rotating particle: angular momentum
circulating on lines.

Higher order angular momentum composition!

The phonon takes
away q⃗1 momen-
tum... ...and gives back q⃗1

momentum

The phonon does
not subtract an-
gular momentum
from the impurity...

...but gives back
two quanta!
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Diagrammatics for a rotating impurity

Moving particle: linear momentum
circulating on lines.

Rotating particle: angular momentum
circulating on lines.

Higher order angular momentum composition!

10/13

The configuration space is more complex... and
bigger! We need an additional update.

Shuffle update: select one 1-particle-
irreducible component, shuffle the momenta
couplings to another allowed configuration.



DiagMC: results

The ground-state energy of the angulon Hamiltonian obtained using DiagMC1 as
a function of the dimensionless bath density, ñ, in comparison with the
weak-coupling theory2 and the strong-coupling theory3.

The energy and quasiparticle
weight are obtained by fitting
the long-imaginary-time
behaviour of Gj with
Gj(τ) = Zj exp(−Ej τ).

Inset: energy of the L = 0, 1, 2
states.

1GB, T.V. Tscherbul, M. Lemeshko, Phys. Rev. Lett. 121, 165301 (2018).
2R. Schmidt and M. Lemeshko, Phys. Rev. Lett. 114, 203001 (2015).
3R. Schmidt and M. Lemeshko, Phys. Rev. X 6, 011012 (2016).
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Conclusions

• A description of rotations in a many-body environment in terms of
Feynman diagrams and a numerically-exact approach to rotations in
quantummany-body systems.

• Future perspectives:
• More advanced schemes (e.g. Σ, bold).
• More realistic systems, such as molecules andmolecular clusters in superfluid
helium nanodroplets.

• Hybridisation of translational and rotational motion.
• Real-time dynamics?
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Backup slide # 1

Free rotor propagator G0,λ(E) =
1

E− Bλ(λ+ 1) + iδ

Interaction propagator χλ(E) =
∑
k

|Uλ(k)|2

E− ωk + iδ
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