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Impurity problems

Definition: one (or a few
particles) interacting with a
many-body environment.

How are the properties of the
particle modified by the
interaction?

Still O
(
1023

)
degrees of freedom...

Quasiparticle description?
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From impurities to quasiparticles

Structureless impurity: translational
degrees of freedom/linear
momentum exchange with the bath.

Most common cases: electron in a
solid, atomic impurities in a BEC.

Image from: F. Chevy, Physics 9, 86.

Composite impurity: translational and
internal (i.e. rotational) degrees of
freedom/linear and angular momentum
exchange.
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This scenario can be formalized in terms of
quasiparticles using the polaron: an elec-
tron dressed by a field of many-body exci-
tations.
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This scenario can be formalized in terms of
quasiparticles using the polaron: an elec-
tron dressed by a field of many-body exci-
tations.

What about a rotating particle? Can there
be a rotating analogue of the polaron quasi-
particle? The main difficulty: the non-
Abelian SO(3) algebra describing rotations.



The angulon

A composite impurity in a bosonic environment can be described by the
angulon Hamiltonian1,2,3,4 (angular momentum basis: k→ {k, λ, µ}):

Ĥ = B̂J2︸︷︷︸
molecule

+
∑
kλµ

ωkb̂†kλµb̂kλµ︸ ︷︷ ︸
phonons

+
∑
kλµ

Uλ(k)
[
Y∗λµ(θ̂, ϕ̂)b̂

†
kλµ + Yλµ(θ̂, ϕ̂)b̂kλµ

]
︸ ︷︷ ︸

molecule-phonon interaction

• Linear molecule.
• Derived rigorously for a molecule
in a weakly-interacting BEC1.

• Phenomenological model for a
molecule in any kind of bosonic
bath3.

1R. Schmidt and M. Lemeshko, Phys. Rev. Lett. 114, 203001 (2015).
2R. Schmidt and M. Lemeshko, Phys. Rev. X 6, 011012 (2016).
3M. Lemeshko, Phys. Rev. Lett. 118, 095301 (2017).
4Y. Shchadilova, ”Viewpoint: A New Angle on Quantum Impurities”, Physics 10, 20 (2017).
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molecule-phonon interaction

• Linear molecule.
• Derived rigorously for a molecule
in a weakly-interacting BEC1.

• Phenomenological model for a
molecule in any kind of bosonic
bath3.

This talk: toy po-
tential. Can be
connected to real
PESs3.

1R. Schmidt and M. Lemeshko, Phys. Rev. Lett. 114, 203001 (2015).
2R. Schmidt and M. Lemeshko, Phys. Rev. X 6, 011012 (2016).
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Composite impurities and where to find them

Strong motivation for the theoretical study of composite impurities
comes from many different fields. Composite impurities are realized as:

• Molecules embedded into
helium nanodroplets
(rotational spectra,
rotational constant
renormalization).

• Ultracold molecules and
ions.

• Electronic excitations in
Rydberg atoms.

• Angular momentum transfer
from the electrons to a
crystal lattice.

Image from: J. P. Toennies and A. F. Vilesov, Angew.

Chem. Int. Ed. 43, 2622 (2004).
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Monte Carlo, single out quantum numbers, etc...
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Rotational spec-
trum

Renormalizated
lines (higher ef-
fective rotational
inertia)
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B. Midya, M. Tomza, R. Schmidt, and M. Lemeshko,
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Path integral description for the angulon

PI description
of a composite,
rotating impurity

PIs for
rotations

PIs for
struc-
tureless
impurities

Main reference: GB and M. Lemeshko, Phys. Rev. B 96, 085410 (2017)
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Path integral description for the angulon

The path integral in QM describes the transition amplitude between two
states with a weighted average over all trajectories, S is the classical
action.

G(xi, xf; tf − ti) =
⟨
xf, tf

∣∣xi, ti⟩ =

∫
Dx eiS[x(t)]

7/21



Path integral description for the angulon

The angulon’s Green function is calculated in the same way. We need

• Molecular coordinates: two angles (θ, ϕ) describing the orientation of
the molecule.

• An infinite number of harmonic oscillators bkλµ to describe the
bosonic bath.

G(θi, ϕi → θf, ϕf; T) =
∫

DθDϕ
∏
kλµ

Dbkλµ ei(Smol+Sbos+Smol-bos)

Critically the environment (bkλµ) can be integrated out exactly

G(θi, ϕi → θf, ϕf; T) =
∫

DθDϕ eiSeff[θ(t),ϕ(t)]

and included in an effective action Seff.

Derived from the
Hamiltonian

8/21



This is essentially switching to the quasiparticle point of view!



Path integral description for the angulon

The angulon’s Green function is calculated in the same way. We need

• Molecular coordinates: two angles (θ, ϕ) describing the orientation of
the molecule.

• An infinite number of harmonic oscillators bkλµ to describe the
bosonic bath.

G(θi, ϕi → θf, ϕf; T) =
∫

DθDϕ
∏
kλµ

Dbkλµ ei(Smol+Sbos+Smol-bos)

Critically the environment (bkλµ) can be integrated out exactly

G(θi, ϕi → θf, ϕf; T) =
∫

DθDϕ eiSeff[θ(t),ϕ(t)]

and included in an effective action Seff.

Derived from the
Hamiltonian

8/21



This is essentially switching to the quasiparticle point of view!



Path integral description for the angulon

The angulon’s Green function is calculated in the same way. We need

• Molecular coordinates: two angles (θ, ϕ) describing the orientation of
the molecule.

• An infinite number of harmonic oscillators bkλµ to describe the
bosonic bath.

G(θi, ϕi → θf, ϕf; T) =
∫

DθDϕ
∏
kλµ

Dbkλµ ei(Smol+Sbos+Smol-bos)

Critically the environment (bkλµ) can be integrated out exactly

G(θi, ϕi → θf, ϕf; T) =
∫

DθDϕ eiSeff[θ(t),ϕ(t)]

and included in an effective action Seff.

Derived from the
Hamiltonian

8/21



This is essentially switching to the quasiparticle point of view!



Path integral description for the angulon

A closer look at the effective action:

Seff =
∫ T

0
dt BJ2︸ ︷︷ ︸
S0

+
i
2

∫ T

0
dt

∫ T

0
ds

∑
λ

Pλ(cos γ(t, s))Mλ(|t− s|)︸ ︷︷ ︸
Sint

• A term describing a free molecule ∼ BJ2.
• A memory term accounting for the many-body environment, a
function of the angle γ(t, s) between the angulon position at
different times.

	
t

Legendre polyno-
mials

Memory kernel

9/21
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Path integral description for the angulon

t

• The many-body problem is
reformulated in terms of a
self-interacting free molecule.

• Time-non-local interaction (cf.
Caldeira-Leggett, polaron, more
generally: open quantum
systems)

• The interaction term is very
difficult to treat: it encodes
exactly the many-body nature of
the problem.

10/21



Diagrammatic theory of angularmomentum in amany-bodybath

We treat the interaction as a perturbation

G =

∫
DθDϕ eiS0+iSint =

∫
DθDϕ eiS0(1+iSint−

1
2S

2
int+. . .) = G(0)+G(1)+G(2)+. . .

The result can be interpreted as a diagrammatic expansion (solid lines
represent a free rotor, dashed lines are the interaction)

• G(0)(θi, ϕi → θf, ϕf; T) is the Green’s function for a free rotor

• G(1)(θi, ϕi → θf, ϕf; T) is the one-loop correctionΣλ
(1)

 (ω) = - i 

• G(2)(θi, ϕi → θf, ϕf; T) is the two-loop correction

Σλ
(2,C)

 (ω) = - +Σλ
(2,B)

 (ω) = - +Σλ
(2,A)

 (ω) = - 

• and so on…
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...and we can derive the Feynman rules from this expansion...



Feynman rules

“Standard” Feynman rules Feynman rules for the angulon
• Start with real-space Green’s
function G(r, r′)

• Green’s function depends on
angles G(θ, ϕ, θ′, ϕ′)

• Fourier transform • Spherical harmonics Yλµ(θ, ϕ)
expansion

• Assign a momentum pi to
every line

• Assign an angular momentum
(λi, µi) to every line

• Each loop: integral over
momenta

• Each line: sums over angular
momenta

• Enforce momentum
conservation: Dirac delta.

• Enforce angular momentum
conservation: Clebsch-Gordan.

12/21



Feynman rules for the angulon

Each external line ∑
λiµi

(−1)µiG0,λiδλext,λiδµext,±µiλext µext λi µi

Each internal G0 line ∑
λiµi

(−1)µiG0,λiλi µi

Each internal χ line ∑
λiµi

(−1)µiχλiλi µi

Each vertex

∼ ⟨λi| |Y(λj)| |λk⟩ Cλiµiλjµj,λkµk
λ i µ i λ

j  µ
j

λ k
 µ

k

Free rotor propagator G0,λ(E) =
1

E− Bλ(λ+ 1) + iδ

Interaction propagator χλ(E) =
∑
k

|Uλ(k)|2
E− ωk + iδ 13/21
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1

E− Bλ(λ+ 1) + iδ

Interaction propagator χλ(E) =
∑
k

|Uλ(k)|2
E− ωk + iδ

Clebsch-Gordan:
angular momen-
tum conservation

Molecule-bath
interaction

Bath dispersion
relation

13/21



Angulon spectral function

Let us use the theory! The plan is simple:

1. Self-energy (Σ)
2. Dyson equation to obtain the angulon Green’s function (G)
3. Spectral function (A)
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Quasiparticle
weight

|bath⟩ |molecule⟩
Variational coeffi-
cients

Clebsch-Gordan
to couple angular
momenta
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Angulon spectral function

Let us use the theory! The plan is simple:

1. Self-energy (Σ)
2. Dyson equation to obtain the angulon Green’s function (G)
3. Spectral function (A)

Second order: = +
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Angulon spectral function

Let us use the theory! The plan is simple:

1. Self-energy (Σ)
2. Dyson equation to obtain the angulon Green’s function (G)
3. Spectral function (A)

Dyson equation

angulon quantum
rotor

many-body field
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Angulon spectral function

Let us use the theory! The plan is simple:

1. Self-energy (Σ)
2. Dyson equation to obtain the angulon Green’s function (G)
3. Spectral function (A)

Finally the spectral function allows for a study the whole excitation
spectrum of the system:

Aλ(E) = − 1
π
ImGλ(E+ i0+)

14/21



Angulon spectral function

Angulon spectral function as a function of the density:

Key features:
1. Low density
2. Intermediate instability
3. High density
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Angulon spectral function: low density

Density range: from ultra-
cold atoms to superfluid
helium.

Low density: free rotor
spectrum, E ∼ L(L+ 1).

Many-body-induced fine
structure: upper phonon
wing (one phonon with
λ = 0, isotropic interac-
tion).

16/21



The appearance of the ``phonon'' state can be understood as a resonance in the many-body...



spectrum emerging due to coupling between the molecule and phonon states outside of the scattering continuum.



Talk of the spectral weight.



Angulon spectral function: instability

Intermediate region: angu-
lon instability.

Corresponding to the emis-
sion of a phonon with λ =

1 (due to anisotropic inter-
action).

Experimental observation: I. N. Cherepanov, M. Lemeshko, “Fingerprints of angulon instabilities in the

spectra of matrix-isolated molecules”, Phys. Rev. Materials 1, 035602 (2017).
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It is fundamentally different from the vortex instability, where angular momentum is quantized in units of hbar per atom of the superfluid.



Angulon spectral function: high density

High density: the two-loop corrections start to be relevant.
Rotational constant renormalization.
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What next?

• Self-consistent Born approximation: exact sum over all non-crossing
diagrams.

• Diagrammatic Monte Carlo: non-perturbative results.

Images from: Altland and Simons, “Condensed Matter Field Theory” and http://www.florian-rappl.de
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Conclusions

• The problem of angular momentum redistribution in a many-body
environment has been treated through the path integral formalism
and reformulated in terms of diagrams.

• It allows for a simple, compact derivation of angulon properties,
including higher order terms.

• Future perspectives:
• Diagrammatic Monte Carlo.
• All-coupling variational theory.
• Dynamics.
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Thank you for your attention.

This work was supported by the
Austrian Science Fund (FWF), project
Nr. P29902-N27.
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