Molecular impurities interacting with a many-body environment: dynamics in Helium nanodroplets

G. Bighin and M. Lemeshko

Institute of Science and Technology Austria

SuperFluctuations 2018 - San Benedetto del Tronto, September 6th, 2018

Quantum impurities

Definition: one (or a few particles) interacting with a many-body environment.

How are the properties of the particle modified by the interaction?
$\mathcal{O}\left(10^{23}\right)$ degrees of freedom.

From impurities to quasiparticles

Structureless impurity: translational degrees of freedom/linear momentum exchange with the bath.

Most common cases: electron in a solid, atomic impurities in a BEC.

From impurities to quasiparticles

Structureless impurity: translational degrees of freedom/linear momentum exchange with the bath.

Most common cases: electron in a solid, atomic impurities in a BEC.

Image from: F. Chevy, Physics 9, 86.

From impurities to quasiparticles

Structureless impurity: translational degrees of freedom/linear momentum exchange with the bath.

Most common cases: electron in a solid, atomic impurities in a BEC.

Image from: F. Chevy, Physics 9, 86.

From impurities to quasiparticles

Structureless impurity: translational

Image from: F. Chevy, Physics 9, 86.

From impurities to quasiparticles

Structureless impurity: translational degrees of f exchange w

Most comm laron and the Fröhlich Hamiltonian.
atomic impurtues in a BEC.

Image from: F. Chevy, Physics 9, 86.

Composite impurity: translational and internal (i.e. rotational) degrees of freedom/linear and angular momentum exchange.

From impurities to quasiparticles

Structureless impurity: translational degrees of f exchange w

Most comm laron and the Fröhlich Hamiltonian.
atomic impurties in a BEC.
This scenario (with a bosonic bath) can be formalized in terms of quasiparticles using the po-

Image from: F. Chevy, Physics 9, 86.

What about a rotating particle? Can there be a rotating counterpart of the polaron quasiparti-

7d internal near and cle? The main difficulty: the non-Abelian SO(3) algebra describing rotations.

The angulon

A composite impurity in a bosonic environment can be described by the angulon Hamiltonian ${ }^{1,2,3,4}$ (angular momentum basis: $\mathbf{k} \rightarrow\{k, \lambda, \mu\}$):

$$
\hat{H}=\underbrace{B \hat{J}^{2}}_{\text {molecule }}+\underbrace{\sum_{k \lambda \mu} \omega_{k} \hat{b}_{k \lambda \mu}^{\dagger} \hat{b}_{k \lambda \mu}}_{\text {phonons }}+\underbrace{\sum_{k \lambda \mu} U_{\lambda}(k)\left[\gamma_{\lambda \mu}^{*}(\hat{\theta}, \hat{\phi}) \hat{b}_{k \lambda \mu}^{\dagger}+Y_{\lambda \mu}(\hat{\theta}, \hat{\phi}) \hat{b}_{k \lambda \mu}\right]}_{\text {molecule-phonon interaction }}
$$

- Linear molecule.
- Derived rigorously for a molecule in a weakly-interacting BEC ${ }^{1}$.
- Phenomenological model for a molecule in any kind of bosonic bath ${ }^{3}$.

${ }^{1}$ R. Schmidt and M. Lemeshko, Phys. Rev. Lett. 114, 203001 (2015).
${ }^{2}$ R. Schmidt and M. Lemeshko, Phys. Rev. X 6, 011012 (2016).
${ }^{3}$ M. Lemeshko, Phys. Rev. Lett. 118, 095301 (2017).
${ }^{4}$ Y. Shchadilova, "Viewpoint: A New Angle on Quantum Impurities", Physics 10, 20 (2017).

The angulon

A composite impurity in a bosonic environment can be described by the angulon Hamiltonian ${ }^{1,2,3,4}$ (angular momentum basis: $\mathbf{k} \rightarrow\{k, \lambda, \mu\}$):

${ }^{1}$ R. Schmidt and M. Lemeshko, Phys. Rev. Lett. 114, 203001 (2015).
${ }^{2}$ R. Schmidt and M. Lemeshko, Phys. Rev. X 6, 011012 (2016).
${ }^{3}$ M. Lemeshko, Phys. Rev. Lett. 118, 095301 (2017).
${ }^{4}$ Y. Shchadilova, "Viewpoint: A New Angle on Quantum Impurities", Physics 10, 20 (2017).

Composite impurities: where to find them

Strong motivation for the study of composite impurities comes from many different fields. Composite impurities are realized as:

- Ultracold molecules and ions.

B. Midya, M. Tomza, R. Schmidt, and M. Lemeshko, Phys. Rev. A 94, 041601(R) (2016).

Composite impurities: where to find them

Strong motivation for the study of composite impurities comes from many different fields. Composite impurities are realized as:

- Ultracold molecules and ions.
- Rotating molecules inside a 'cage' in perovskites.

T. Chen et al., PNAS 114, 7519 (2017).
J. Lahnsteiner et al., Phys. Rev. B 94, 214114 (2016).

Image from: C. Eames et al, Nat. Comm. 6, 7497 (2015).

Composite impurities: where to find them

Strong motivation for the study of composite impurities comes from many different fields. Composite impurities are realized as:

- Ultracold molecules and ions.
- Rotating molecules inside a 'cage' in perovskites.
- Angular momentum transfer from the electrons to a crystal lattice.

J.H. Mentink, M.I. Katsnelson, M. Lemeshko, "Quantum many-body dynamics of the Einstein-de Haas effect", arXiv:1802.01638

Composite impurities: where to find them

Strong motivation for the study of composite impurities comes from many different fields. Composite impurities are realized as:

- Ultracold molecules and ions.
- Rotating molecules inside a 'cage' in perovskites.
- Angular momentum transfer from the electrons to a crystal lattice.
- Molecules embedded into helium nanodroplets.

Image from: J. P. Toennies and A. F. Vilesov, Angew. Chem. Int. Ed. 43, 2622 (2004).

Out-of-equilibrium dynamics of molecules in He nanodroplets

Dynamical alignment of molecules in He nanodroplets

Molecules embedded into helium nanodroplets:
-

Images from: J. P. Toennies and A. F. Vilesov, Angew. Chem. Int. Ed. 43, 2622 (2004).

Dynamical alignment of molecules in He nanodroplets

Molecules embedded into helium nanodroplets:

Images from: J. P. Toennies and A. F. Vilesov, Angew. Chem. Int. Ed. 43, 2622 (2004).

Dynamical alignment of molecules in He nanodroplets

Molecules embedded into helium nanodroplets:

Images from: J. P. Toennies and A. F. Vilesov, Angew. Chem. Int. Ed. 43, 2622 (2004).

Dynamical alignment of molecules in He nanodroplets

Dynamical alignment experiments:

- Kick pulse, aligning the molecule.
- Probe pulse, destroying the molecule.
- Fragments are imaged, reconstructing alignment as a function of time.
- Averaging over multiple realizations, and varying the time between the two pulses, one gets

$$
\left\langle\cos ^{2} \hat{\theta}_{2 \mathrm{D}}\right\rangle(t)
$$

with:

$$
\cos ^{2} \hat{\theta}_{2 D} \equiv \frac{\cos ^{2} \hat{\theta}}{\cos ^{2} \hat{\theta}+\sin ^{2} \hat{\theta} \sin ^{2} \hat{\phi}}
$$

Image from B. Shepperson et al., Phys. Rev. Lett. 118, 203203 (2017).

Dynamical alignment of molecules in He nanodroplets

Interaction of a free molecule with an off-resonant laser pulse

$$
\hat{H}=B \hat{\mathbf{J}}^{2}-\frac{1}{4} \Delta \alpha E^{2}(t) \cos ^{2} \hat{\theta}
$$

When acting on a free molecule, the laser excites in a short time many rotational states ($L \leftrightarrow L+2$), creating a rotational wave packet:

G. Kaya, Appl. Phys. B 6, 122 (2016).
\square

Dynamical alignment of molecules in He nanodroplets

Effect of the environment is substantial: free molecule vs. same molecule in He .

Stapelfeldt group, Phys. Rev. Lett. 110, 093002 (2013).

Not even a qualitative understanding. Monte Carlo?

- Strong coupling
- Out-of-equilibrium dynamics
- Finite temperature ($B \sim k_{B} T$)
\square

Canonical transformation

Bosons: laboratory frame (x, y, z)
Molecules: rotating frame $\left(x^{\prime}, y^{\prime}, z^{\prime}\right)$ defined by the Euler angles ($\hat{\phi}, \hat{\theta}, \hat{\gamma}$).

$$
\hat{S}=e^{-\mathrm{i} \hat{\phi} \otimes \hat{\Lambda}_{z}} e^{-\mathrm{i} \hat{\theta} \otimes \hat{\Lambda}_{y}} e^{-\mathrm{i} \hat{\gamma} \otimes \hat{\Lambda}_{z}}
$$

where $\overrightarrow{\hat{\Lambda}}=\sum_{\mu \nu} b_{k \lambda \mu}^{\dagger} \vec{\sigma}_{\mu \nu} b_{k \lambda \nu}$ is the angular momentum of the bosons.

The \hat{S} transformation takes us to the molecular frame.

Canonical transformation

Bosons: laboratory frame (x, y, z)
Molecules: rotating frame $\left(x^{\prime}, y^{\prime}, z^{\prime}\right)$ defined by the Euler angles ($\hat{\phi}, \hat{\theta}, \hat{\gamma}$).

$$
\hat{S}=e^{-\mathrm{i} \hat{\phi} \otimes \hat{\Lambda}_{z}} e^{-\mathrm{i} \hat{\theta} \otimes \hat{\Lambda}_{y}} e^{-\mathrm{i} \hat{\gamma} \otimes \hat{\Lambda}_{z}}
$$

where $\overrightarrow{\hat{\Lambda}}=\sum_{\mu \nu} b_{k \lambda \mu}^{\dagger} \vec{\sigma}_{\mu \nu} b_{k \lambda \nu}$ is the angular momentum of the bosons.

The \hat{S} transformation takes us to the molecular frame.

- Macroscopic deformation of the bath, exciting an infinite number of bosons (cf. Lee-Low-Pines for the polaron).
- Simplifies angular momentum algebra.
- Hamiltonian diagonalizable through a coherent state transformation in the $B \rightarrow 0$ limit. An expansion in bath excitations is a strong coupling expansion.

Canonical transformation

Bosons: laboratory frame (x, y, z)
Molecules: rotating frame $\left(x^{\prime}, y^{\prime}, z^{\prime}\right)$ defined by the Euler angles ($\hat{\phi}, \hat{\theta}, \hat{\gamma}$).

$$
\hat{S}=e^{-\mathrm{i} \hat{\phi} \otimes \hat{\Lambda}_{z}} e^{-\mathrm{i} \hat{\theta} \otimes \hat{\Lambda}_{y}} e^{-\mathrm{i} \hat{\gamma} \otimes \hat{\Lambda}_{z}}
$$

where $\overrightarrow{\hat{\Lambda}}=\sum_{\mu \nu} b_{k \lambda \mu}^{\dagger} \vec{\sigma}_{\mu \nu} b_{k \lambda \nu}$ is the
 angular momentum of tha b -
\checkmark Strong coupling

- Macrosc - Out-of-equilibrium dynamics (cf. Lee-L Finite temperature ($B \sim k_{B} T$)
- Simplifie - Finite temperature $\left(B \sim k_{B} T\right)$
- Hamilton $B \rightarrow 0$ limit. An expansion in bath excitations is a strong coupling expansion.

Dynamics: time-dependent variational Ansatz

We use a time-dependent variational Ansatz:

$$
|\psi\rangle=g_{L M}(t)|0\rangle_{\text {bos }}|L M 0\rangle+\sum_{k \lambda n} \alpha_{k \lambda n}^{L M}(t) b_{k \lambda n}^{\dagger}|0\rangle_{\text {bos }}|L M n\rangle
$$

Lagrangian on the variational manifold defined by $|\psi\rangle$:

$$
\mathcal{L}_{T=0}=\langle\psi| \mathrm{i} \partial_{t}-\hat{\mathcal{H}}|\psi\rangle
$$

Euler-Lagrange equations of motion:

$$
\frac{d}{d t} \frac{\partial \mathcal{L}}{\partial \dot{x}_{i}}-\frac{\partial \mathcal{L}}{\partial x_{i}}=0
$$

where $x_{i}=\left\{g_{L M}, \alpha_{k \lambda n}\right\}$.

$$
\left\{\begin{array}{l}
\dot{g}_{L M}(t)=\ldots \\
\dot{\alpha}_{k \lambda n}^{L M}(t)=\ldots
\end{array}\right.
$$

Dynamics: time-dependent variational Ansatz

We use a time-dependent variational Ansatz:

$$
|\psi\rangle=g_{L M}(t)|0\rangle_{\text {bos }}|L M 0\rangle+\sum_{k \lambda n} \alpha_{k \lambda n}^{L M}(t) b_{k \lambda n}^{\dagger}|0\rangle_{\text {bos }}|L M n\rangle
$$

Lagrangian on the variational manifold defined by $|\psi\rangle$:

$$
\mathcal{L}_{T=0}=\langle\psi| \mathrm{i} \partial_{t}-\hat{\mathcal{H}}|\psi\rangle
$$

Euler-Lagrange equations of motion:

$$
\frac{d}{d t} \frac{\partial \mathcal{L}}{\partial \dot{x}_{i}}-\frac{\partial \mathcal{L}}{\partial x_{i}}=0
$$

where $x_{i}=\left\{g_{L M}, \alpha_{k \lambda n}\right\}$.

$$
\left\{\begin{array}{l}
\dot{g}_{L M}(t)=\ldots \\
\dot{\alpha}_{k \lambda n}^{L M}(t)=\ldots
\end{array}\right.
$$

\checkmark Strong coupling
\checkmark Out-of-equilibrium dynamics

- Finite temperature ($B \sim k_{B} T$)

Finite-temperature dynamics

For the impurity: average over a statistical ensamble, with weights $W_{L} \propto \exp \left(-\beta E_{L}\right)$.

For the bath: defining the 'Chevy operator'

$$
\hat{O}=g_{L M}(t)|L M 0\rangle \mathbb{1}+\sum_{k \lambda n} \alpha_{k \lambda n}^{L M}(t)|L M n\rangle \hat{b}_{k \lambda n}^{\dagger}
$$

at $T=0$ the Lagrangian is

$$
\mathcal{L}_{T=0}=\langle 0| \hat{O}^{\dagger}\left(\mathrm{i} \partial_{t}-\hat{\mathcal{H}}\right) \hat{O}|0\rangle_{\text {bos }},
$$

suggesting that at finite temperature

$$
\mathcal{L}_{T}=\operatorname{Tr}\left[\rho_{0} \hat{O}^{\dagger}\left(\mathrm{i} \partial_{t}-\hat{\mathcal{H}}\right) \hat{O}\right]
$$

where ρ_{0} is the density matrix for the medium.
[1] A. R. DeAngelis and G. Gatoff, Phys. Rev. C 43, 2747 (1991).
[2] W.E. Liu, J. Levinsen, M. M. Parish, "Variational approach for impurity dynamics at finite temperature",

Finite-temperature dynamics

For the impurity: average over a statistical ensamble, with weights $W_{L} \propto \exp \left(-\beta E_{L}\right)$.

For the bath: defining the 'Chevy operator'

$$
\hat{O}=g_{L M}(t)|L M 0\rangle \mathbb{1}+\sum_{k \lambda n} \alpha_{k \lambda n}^{L M}(t)|L M n\rangle \hat{b}_{k \lambda n}^{\dagger}
$$

at $T=0$ the Lagrangian is

$$
\mathcal{L}_{T=0}=\langle 0| \hat{O}^{\dagger}\left(\mathrm{i} \partial_{t}-\hat{\mathcal{H}}\right) \hat{O}|0\rangle_{\text {bos }},
$$

suggesting that at finite temperature

$$
\mathcal{L}_{T}=\operatorname{Tr}\left[\rho_{0} \hat{O}^{\dagger}\left(\mathrm{i} \partial_{t}-\hat{\mathcal{H}}\right) \hat{O}\right]
$$

where ρ_{0} is the density matrix for the
\checkmark Strong coupling
\checkmark Out-of-equilibrium dynamics
\checkmark Finite temperature $\left(B \sim k_{B} T\right)$ medium.
[1] A. R. DeAngelis and G. Gatoff, Phys. Rev. C 43, 2747 (1991).
[2] W.E. Liu, J. Levinsen, M. M. Parish, "Variational approach for impurity dynamics at finite temperature",

Theory vs. experiments: I_{2}

Comparison of the theory with preliminary experimental data from Stapelfeldt group, Aarhus University, for different molecules: I_{2}.

Theory vs. experiments: I_{2}

> Comparison of the theory with preliminary experimental data from Stapelfeldt group, Aarhus University, for different molecules: I_{2}.

Which rotational states are populated as the laser is switched on, and after?

Theory vs. experiments: I_{2}

Theory vs. experiments: I_{2}

Theory vs. experiments: I_{2}

Comparison of the theory with preliminary experimental data from Stapelfeldt group, Aarhus University, for different molecules: I_{2}.

$\left\langle\cos ^{2} \hat{\theta}_{2 \mathrm{D}}\right\rangle(t)$

Laser fluence F measured in $\mathrm{J} / \mathrm{cm}^{2}$

Theory vs. experiments: $C S_{2}$

Comparison of the theory with preliminary experimental data from Stapelfeldt group, Aarhus University, for different molecules: CS_{2}.

$$
\left\langle\cos ^{2} \hat{\theta}_{2 \mathrm{D}}\right\rangle(t)
$$

Theory vs. experiments: OCS

Comparison of the theory with preliminary experimental data from Stapelfeldt group, Aarhus University, for different molecules: OCS.

Diagrammatic Monte Carlo

More numerical approach: DiagMC, sampling all diagrams in a stochastic way.

How do we describe angular momentum redistribution in terms of diagrams? How does the configuration space looks like?

Connecting DiagMC and the theory of molecular simulations!

Conclusions

- The angulon quasiparticle: a quantum rotor dressed by a field of many-body excitations.
- Canonical transformation and finite-temperature variational Ansatz.
- Out-of-equilibrium dynamics of molecules in He nanodroplets can be interpreted in terms of angulons.

Lemeshko group @ IST Austria:

 \title{
$\mathbf{I}|\mathbf{S}| \mathbf{T}$ AUSTRIA

}
 \title{

$\mathbf{I}|\mathbf{S}| \mathbf{T}$ AUSTRIA

}

Institute of Science and Technology

Misha
Lemeshko

Thank you for your attention.

FШF

Der Wissenschaftsfonds.

This work was supported by the Austrian Science Fund (FWF), project Nr.
P29902-N27.

Backup slide \# 1

Free rotor propagator

$$
G_{0, \lambda}(E)=\frac{1}{E-B \lambda(\lambda+1)+\mathrm{i} \delta}
$$

Interaction propagator

$$
\chi_{\lambda}(E)=\sum_{k} \frac{\left|U_{\lambda}(k)\right|^{2}}{E-\omega_{k}+\mathrm{i} \delta}
$$

Backup slide \# 2

Backup slide \# 3

