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Outline

• Introduction and motivation: BCS-BEC crossover in 2D.
• �eoretical description of a 2D Fermi gas using the path integral
formalism: mean-�eld and Gaussian �uctuations.

• �e role of �uctuations: the composite boson limit.
• Results and comparison with experimental data:

� Equation of state
� First sound
� Second sound
� Berezinskii-Kosterlitz-�ouless critical temperature.

Main reference: GB and L. Salasnich, Phys. Rev. B 93, 014519 (2016).
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�e BCS-BEC crossover (1/2)

In 2004 the BCS-BEC crossover has been observed with ultracold gases made
of fermionic 40K and 6Li alkali-metal atoms. �e fermion-fermion a�ractive
interaction can be tuned (using a Feshbach resonance), from weakly to
strongly interacting.

BCS regime: weakly interacting
Cooper pairs.

BEC regime: tightly bound bosonic
molecules.
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�e BCS-BEC crossover (2/2)

An additional laser con�nement can be
used to create a quasi-2D pancake
geometry, trapping the fermions in the
antinodes of a standing optical wave.
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In 2014 the 2D BCS-BEC crossover has
been observed1 with a quasi-2D Fermi
gas of 6Li atoms with widely tunable
s-wave interaction. �e pressure P
versus the gas parameter aB

p
n has

been measured.

1V. Makhalov, K. Martiyanov, and A. Turlapov, PRL 112, 045301 (2014).
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�e BCS-BEC crossover in 2D (1/2)

Many properties of 2D Fermi condensates are currently being studied:
• Imaging of the atomic cloud1.
• Equation of state.
• Recently (June 2015) the direct observation of the BKT transition has been
reported2.

• Dynamic properties: sound velocity.
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1M. G. Ries et al., Phys. Rev. Le�. 114, 230401 (2015)
2P. A. Murthy et al., Phys. Rev. Le�. 115, 010401 (2015).
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�e BCS-BEC crossover in 2D (1/2)

Many properties of 2D Fermi condensates are currently being studied:
• Imaging of the atomic cloud1.
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�e BCS-BEC crossover in 2D (2/2)

Why is the 2D case interesting from the theory point of view?

• �alitatively new physics: a bound state is always present.
• Berezinskii-Kosterlitz-�ouless mechanism:

� Mermin-Wagner-Hohenberg theorem: no condensation at �nite temperature,
no o�-diagonal long-range order.

� Algebraic decay of correlation functions hexp(i✓(r)) exp(i✓(0))i ⇠ |r|�⌘

� Transition to the normal state at a �nite temperature TBKT .
• �e �uctuations are more relevant for lower dimensionalities. �e mean
�eld theory can correctly describe (to some extent) the crossover in 3D, we
expect it not to work at all in 2D.

• �e physics of the BCS-BEC crossover is also relevant in the description of
many di�erent systems (bilayers of dipolar atoms, exciton-polariton
condensates, thin 3He �lms). It may also be relevant for the description of
high-Tc cuprates as the scaled correlation length (kF⇠0 ⇠ 5 for YBCO and
kF⇠0 ⇠ 10 for LSCO) lies between the BCS (kF⇠0 ⇠ 103) and BEC (kF⇠0 ⌧ 1)
regimes.

6 of 32



�e BCS-BEC crossover in 2D (2/2)

Why is the 2D case interesting from the theory point of view?
• �alitatively new physics: a bound state is always present.
• Berezinskii-Kosterlitz-�ouless mechanism:

� Mermin-Wagner-Hohenberg theorem: no condensation at �nite temperature,
no o�-diagonal long-range order.

� Algebraic decay of correlation functions hexp(i✓(r)) exp(i✓(0))i ⇠ |r|�⌘

� Transition to the normal state at a �nite temperature TBKT .

• �e �uctuations are more relevant for lower dimensionalities. �e mean
�eld theory can correctly describe (to some extent) the crossover in 3D, we
expect it not to work at all in 2D.

• �e physics of the BCS-BEC crossover is also relevant in the description of
many di�erent systems (bilayers of dipolar atoms, exciton-polariton
condensates, thin 3He �lms). It may also be relevant for the description of
high-Tc cuprates as the scaled correlation length (kF⇠0 ⇠ 5 for YBCO and
kF⇠0 ⇠ 10 for LSCO) lies between the BCS (kF⇠0 ⇠ 103) and BEC (kF⇠0 ⌧ 1)
regimes.

6 of 32



�e BCS-BEC crossover in 2D (2/2)

Why is the 2D case interesting from the theory point of view?
• �alitatively new physics: a bound state is always present.
• Berezinskii-Kosterlitz-�ouless mechanism:

� Mermin-Wagner-Hohenberg theorem: no condensation at �nite temperature,
no o�-diagonal long-range order.

� Algebraic decay of correlation functions hexp(i✓(r)) exp(i✓(0))i ⇠ |r|�⌘

� Transition to the normal state at a �nite temperature TBKT .
• �e �uctuations are more relevant for lower dimensionalities. �e mean
�eld theory can correctly describe (to some extent) the crossover in 3D, we
expect it not to work at all in 2D.

• �e physics of the BCS-BEC crossover is also relevant in the description of
many di�erent systems (bilayers of dipolar atoms, exciton-polariton
condensates, thin 3He �lms). It may also be relevant for the description of
high-Tc cuprates as the scaled correlation length (kF⇠0 ⇠ 5 for YBCO and
kF⇠0 ⇠ 10 for LSCO) lies between the BCS (kF⇠0 ⇠ 103) and BEC (kF⇠0 ⌧ 1)
regimes.

6 of 32



�e BCS-BEC crossover in 2D (2/2)

Why is the 2D case interesting from the theory point of view?
• �alitatively new physics: a bound state is always present.
• Berezinskii-Kosterlitz-�ouless mechanism:

� Mermin-Wagner-Hohenberg theorem: no condensation at �nite temperature,
no o�-diagonal long-range order.

� Algebraic decay of correlation functions hexp(i✓(r)) exp(i✓(0))i ⇠ |r|�⌘

� Transition to the normal state at a �nite temperature TBKT .
• �e �uctuations are more relevant for lower dimensionalities. �e mean
�eld theory can correctly describe (to some extent) the crossover in 3D, we
expect it not to work at all in 2D.

Example: theoretically-derived 3D
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experimental data (MIT, Zwierlein
group). From L. Salasnich et al., PRA
72, 023621 (2005).
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Path integral description of a Fermi gas (1/4)

�e partition function Z of a uniform system at temperature T , in a
d-dimensional volume Ld , and with chemical potential µ reads

Z =

Z
D �D ̄�e�S[ �, ̄� ]

Fermions are described by anticommuting Grassmann �elds,  �(x, ⌧) and the
imaginary time goes from 0 to ~�, where � = 1

kBT
. Action:

S = Sfree + Sint

• Action for a free particle:

Sfree[ �,  ̄�] =
Z ~�

0
d⌧

Z
ddx

X

�

 ̄(x, ⌧)

~ @
@⌧

� ~2
2m

r2 � µ

�
 (x, ⌧)
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Fermions are described by anticommuting Grassmann �elds,  �(x, ⌧) and the
imaginary time goes from 0 to ~�, where � = 1

kBT
. Action:

S = Sfree + Sint

• Interaction term:

Sint[ �,  ̄�] =
Z ~�

0
d⌧

Z
ddxddy  ̄"(x, ⌧) ̄#(y, ⌧)V (x�y) #(y, ⌧) "(x, ⌧)

For a dilute gas one can use V (x� y) = g0�(x� y), where g0 < 0 is the
a�ractive strength of the s-wave coupling.
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Path integral description of a Fermi gas (2/4)

How to treat the quartic interaction term ⇠  4?
• We use a Hubbard-Stratonovich transformation, introducing the auxiliary
�eld �(x) and the shorthand x = (x, ⌧).

• �e interaction between fermions is described in terms of an exchange
boson.

Remarks:
• Essentially a Gaussian integral.
• Physical meaning of the transformation: � ⇠   , as in the BCS theory a
�nite expectation value signals the onset of pairing.

• Result: the quartic interaction is decoupled, but we have introduced a new
�eld, hopefully we can treat in perturbatively.
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Path integral description of a Fermi gas (3/4)

A�er the H/S transformation the partition function can be recast in an elegant
way using the Nambu-Gor’kov spinors ( (x) =

�
 "(x)  ̄#(x)

�T )

Z =

Z
D�D�̄D �D ̄� exp

"Z
dx ( ̄(x)

⇥�G�1⇤
x  (x)�

|�(x)|2
g0

)

#

�e integration over the fermionic �elds  � ,  ̄� can now be carried out
exactly, being the action quadratic form in the fermionic �elds, yielding:

Z =

Z
D�D�̄ exp

"
Tr ln

��G�1�+
Z

dx
|�|2
g0

#

�e complete physics of the system is encoded in the Green’s function G.

⇥�G�1⇤
x =

✓
~@⌧ + ⇠ ��(x)
��̄(x) ~@⌧ � ⇠

◆

with ⇠ = �~2r2

2m � µ.
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�e correlation functions generating functional

Let us consider for simplicity the case with a constant, uniform �. Let
us construct a generating functional by adding source terms to the par-
tition function Z =

R D D ̄ exp
�� ̄iG�1

ij  j
�
and integrating out the

fermionic �elds (i, j can be any index: position, spin, Nambu space)

Z[J, J̄ ] =

Z
D D ̄e� ̄iG

�1
ij  j+J̄i i+J ̄i = det

�
G�1
ij

�
eJ̄iGijJj

Di�erentiating twice w.r.t. the sources ones sees that the Green function
G is the 2-point function

1
Z

�2

�Ja�J̄b
Z
����
J=J̄=0

= h a ̄bi = Gab

and by applying the same strategy multiple times and subsequently us-
ing Wick’s theorem one can derive n-point functions in terms of G.
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In the present case the Green’s function G is a 2⇥ 2 matrix in Nambu space,
and corresponds to the (imaginary-) time-ordered expectation values for
fermionic �elds, here G

G(x) =
✓ hT⌧ (x) †(0)i hT⌧ (x) (0)i
hT⌧ †(x) †(0)i hT⌧ †(x) (0)i

◆
=

✓
G F
F̄ Ḡ

◆

Z =

Z
D�D�̄ exp

"
Tr ln

��G�1�+
Z

dx
|�|2
g0

#
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Path integral description of a Fermi gas (4/4)

How to tackle the problem? Idea: separate a leading (and integrable)
contribution from a small contribution (to be treated perturbatively).
We expand the pairing �eld � around a constant and uniform saddle-point
con�guration �0, as

�(x) = �0 + ⌘(x)

it follows that

✓
~@⌧ + ⇠ ��(x)
��̄(x) ~@⌧ � ⇠

◆

| {z }
[�G�1]x

=

✓
~@⌧ + ⇠ ��0
��̄0 ~@⌧ � ⇠

◆

| {z }
h
�G�1

sp

i

x

+

✓
0 �⌘(x)

�⌘̄(x) 0

◆

| {z }
[F]x
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Mean �eld and �uctuations (1/2)

We separate the mean-�eld and �uctuations components in the partition
function, too! �e ln(�G�1) becomes

ln
��G�1� = ln

��G�1
sp

�
+ ln

�
1 � GspF

�

expanding the logarithm up to the second order in the �uctuation �elds ⌘ we
obtain

ln
�
1 � GspF

�
= �

1X

n=1

�
GspF

�n

n
⇡ ⇠⇠⇠XXX�GspF � 1

2
GspFGspF +O�

⌘3
�

Final result: mean-�eld and Gaussian-level partition functions

Z ⇡
Z

D�D�̄eTr ln(�G�1) =

Z
D�D�̄eTr ln(�G�1

sp )eTr ln(1�GspF) = Zmf Z�

with:
Zmf = det

��G�1
sp

� Z� =

Z
D⌘D⌘̄ e� 1

2 Tr(GspFGspF)+
R
dx |⌘|2

g0
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Mean �eld and �uctuations (2/2)

Using Z = e��⌦, where ⌦ is the thermodynamic grand potential, one gets the
mean-�eld equation of state:

⌦mf(µ) = � mL2

2⇡~2 (µ+
1
2
✏B)

2

where ✏B is the binding energy of a pair, and the Gaussian-level contribution
to the grand potential (Q = (q, i⌦n) and ⌦n are Bose Matsubara frequencies.):

⌦�(µ,�0) =
1
2�

X

Q

ln det(M(Q))

• At mean-�eld the algebra is very simple, k-integrations are analytical.
• �e �uctuations algebra on the other hand is quite involved.
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M12(q, i⌦m) = ��2
0
X

k

tanh(�Ek/2)
2Ek

"
1

(i⌦m � Ek + Ek+q)(i⌦m � Ek � Ek+q)
+

+
1

(i⌦m + Ek � Ek+q)(i⌦m + Ek + Ek+q)

#
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2m
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q
⇠2k +�

2
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Single particle and collective excitations

One �nds that in the gas of paired fermions there are two kinds of elementary
excitations: fermionic single-particle excitations with energy

Esp(k) =

s✓
~2k2
2m

� µ

◆2

+�2
0 ,

where �0 is the pairing gap, and bosonic collective excitations with energy

Ecol(q) =

s
~2q2
2m

✓
�
~2q2
2m

+ 2mc2s

◆
,

where � is the �rst correction to the familiar low-momentum phonon
dispersion Ecol(q) ' cs~q and cs is the sound velocity.
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�e extended BCS equations

Gap equation

�e saddle point condition determines �0.
@⌦

@�0
= 0

Number equation

�e number equation is used to implicitly determine µ as a function of
the number of particles N .

N = �@⌦
@µ

= �@⌦mf

@µ
� @⌦�

@µ
� @⌦�

@�0

@�0

@µ

�e gap and number equation are jointly solved and determine the chemical
potential µ and the pairing gap �0 as a function of the crossover.
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Bound state equation

In 2D the strength of the a�ractive s-wave potential is g0 < 0, which can be
implicitely related to the bound state energy:

� 1
g0

=
1
2L2

X

k

1
✏k +

1
2✏B

.

with ✏k = ~2k2/(2m). In 2D, as opposed to the 3D case, a bound state exists
even for arbitrarily weak interactions, making ✏B a good variable to describe
the whole BCS-BEC crossover.

�e binding energy ✏B and the fermionic (2D) sca�ering length a2D are related
by the equation1:

✏B =
4~2

e2�ma22D

1C. Mora and Y. Castin, Phys. Rev. A 67, 053615 (2003).
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�e role of Gaussian �uctuations and collective
excitations: composite bosons (1/3)

In the strongly interacting limit an a�ractive Fermi
gas maps to a gas of composite bosons with
chemical potential µB = 2(µ+ ✏B/2) and mass
mB = 2m. Residual interaction between bosons.

�e present theory extends the BCS theory to the
strong-coupling regime, following Legge�’s
original intuition. One may want to check: is the
strong coupling limit correctly recovered at
mean-�eld? And at a Gaussian level?
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�e role of Gaussian �uctuations and collective
excitations: composite bosons (1/2)

In three dimensions:
• Even a mean-�eld theory may provide good precision in the intermediate
and BEC regime at T = 0, e.g. in the case of the condensate fraction.

• Residual interaction between bosons: ab = 2as (mean-�eld), ab = 2/3as
(Monte Carlo, �uctuations1, experiments).

• Finite temperature properties: only in the strictly BCS limit.
• Equation of state (from P. Pieri et al., Phys. Rev. B 70, 094508 (2004));
chemical potential µ and pairing gap �0 across the crossover, MF vs FL.

1L. Salasnich and GB, Phys. Rev. A 91, 033610 (2015).
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�e role of Gaussian �uctuations and collective
excitations: composite bosons (2/2)

In two dimensions:
• �e role of the �uctations is, as expected, more relevant. �e mean-�eld
theory is expected to work just in strictly BCS limit.

• It has been shown that the inclusion of Gaussian �uctuations at T = 0
reproduces Popov’s equation of state of 2D bosons, with
aB = aF/(2

1
2 e 1

4 ) ' 0.551aF , in agreement with Monte Carlo calculations.
• �e equation of state of composite 2D bosons is radically di�erent.

Gaussian �uctuations are cru-
cial in correctly describing the
properties of a 2D Fermi gas in
the intermediate and strong-
coupling regimes!

1L. Salasnich and F. Toigo, Phys. Rev. A 91, 011604(R) (2015)
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�eory vs. experiments
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Equation of state

�e pressure measured as a function of the adimensional gas parameter
aB
p
nB. Experimental data, as shown in the introduction (red curve: smooth

approximation of pure 2D Monte Carlo simulation) vs. the present model
(gray dashed curve: mean-�eld, black curve: with �uctuations)

Bose Strong
Interaction

Fermi

a2
√

n2

P2

P2 ideal

0.1 1 10
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

See also: L. He et al., Phys. Rev. A 92, 023620 (2015).

22 of 32



Equation of state

�e pressure measured as a function of the adimensional gas parameter
aB
p
nB. Experimental data, as shown in the introduction (red curve: smooth

approximation of pure 2D Monte Carlo simulation) vs. the present model
(gray dashed curve: mean-�eld, black curve: with �uctuations)

Bose Strong
Interaction

Fermi

a2
√

n2

P2

P2 ideal

0.1 1 10
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

See also: L. He et al., Phys. Rev. A 92, 023620 (2015).

22 of 32



Equation of state

�e pressure measured as a function of the adimensional gas parameter
aB
p
nB. Experimental data, as shown in the introduction (red curve: smooth

approximation of pure 2D Monte Carlo simulation) vs. the present model
(gray dashed curve: mean-�eld, black curve: with �uctuations)

Bose Strong
Interaction

Fermi

a2
√

n2

P2

P2 ideal

0.1 1 10
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

See also: L. He et al., Phys. Rev. A 92, 023620 (2015).

22 of 32



First sound velocity (1/2)

�e �rst sound velocity cs can be read from the collective excitations spectrum:

Ecol(q) =

s
~2q2
2m

✓
�
~2q2
2m

+ 2mcs2
◆

Alternatively the T = 0 sound velocity is calculated through the
thermodynamics formula:

cs =

r
n
m
@µ

@n
We compare our result with:
• �e mean-�eld result, neglecting Gaussian �uctuations.
• �e composite boson limit, obtained through Popov’s equation of state for
2D interacting bosons

c2s =
4⇡~2
m2

B

nB
ln
⇣

1
nBa2B

⌘

• Preliminary experimental data (University of Hamburg).
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First sound velocity (2/2)

• Away from the weak-coupling
limit, in the intermediate region
and in the BEC limit the sound
velocity cs is strongly a�ected by
the Gaussian contribution to the
equation of state.

• Strong coupling: composite boson
limit.

• �ite good agreement with
(preliminary) experimental data.

• �e temperature dependence
(inset) is very weak.
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BKT critical temperature (1/4)

�e Berezinskii-Kosterlitz-�ouless (BKT) transition separated the
low-temperature phase characterized by bound vortex-antivortex pairs from
the high-temperature phase characterized by a proliferation of free vortices.
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�e Berezinskii-Kosterlitz-�ouless (BKT) transition separated the
low-temperature phase characterized by bound vortex-antivortex pairs from
the high-temperature phase characterized by a proliferation of free vortices.

�e BKT critical temperature is found using the Kosterlitz-Nelson (KN)
condition:

kBTBKT =
~2⇡
8m

ns(TBKT )
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�e Berezinskii-Kosterlitz-�ouless (BKT) transition separated the
low-temperature phase characterized by bound vortex-antivortex pairs from
the high-temperature phase characterized by a proliferation of free vortices.

�e BKT critical temperature is found using the Kosterlitz-Nelson (KN)
condition:

kBTBKT =
~2⇡
8m

ns(TBKT )

�e super�uid density is obtained using Landau’s quasiparticle excitations
formula for fermionic and bosonic excitations:

nn,f = �

Z
d2k
(2⇡)2

k2
e�Ek

(e�Ek + 1)2
and nn,b =

�

2

Z
d2q
(2⇡)2

q2
e�Ecol

(e�Ecol � 1)2
,

then ns = n� nn,f � nn,b.
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BKT critical temperature (2/4)

Main approximation

�e single-particle and collective contributions are not independent, as
there is hybridization due to Landau damping at �nite temperature.

�e e�ect of hybridization is most prominent at T ⇠ ✏F , here in the
super�uid phase, below TBKT , one has kBT . 0.125✏F and the hybridiza-
tion can be safely ignored.

Previous results a posteriori con�rm that hybridization should be ne-
glectable.
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BKT critical temperature (3/4)

We can compare the theory with recently obtained experimental data2:

• �e agreement with experimental
data is very good in the
intermediate and strongly coupled
regimes.

• �e agreement for two points in
the weakly-coupled regime is not
as good, but still within 1.2�.

• However, under very general
assumptions, TBKT . 0.125✏F if the
Kosterlitz-Nelson condition holds.

1P. A. Murthy et al., Phys. Rev. Le�. 115, 010401 (2015).
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BKT critical temperature (4/4)

Composite boson limit: combining aB = 1
21/2e1/4 aF , ✏B = 4

e2�
~2

maF 2
we get:

✏B
✏F

=


nBa2B
 ' 0.061

�e strongly bound regime maps to the
low density limit of a Bose gas.

Prokofev and Svistunov, using a mixed analytical and Monte Carlo approach,
have found for 2D bosons:

TBKT =
2⇡nB

mB log
⇣

⇠
mBUe�

⌘ Ue� =
4⇡

mB log(1/nBa2B)

with ⇠ ⇠ 380. Pu�ing everything all together
one obtains an estimate for TBKT valid in the
strongly-coupled regime. How does it
compares to the present theory and to
experimental data?
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Vortices

Preliminary study of the super�uid density renormalization due to the
contribution of vortices, currently in progress.

Kosterlitz renormalization group equations
(

dK�1(l)
dl = 4⇡3y2(l) + O(y3)

dy(l)
dl = [2� ⇡K(l)] y(l) + O(y2)

With initial conditions K(l = 0) = ns(l)/T
and y(l = 0) = exp(�⇡ns/2T), we
calculate K(1).
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Vortices

Preliminary study of the super�uid density renormalization due to the
contribution of vortices, currently in progress.

�e BKT critical temperature is
slightly lower, especially in the Bose
regime, as an e�ect of the renormal-
ized super�uid density.

Is it possible to calculate ⇠ ⇠ 380?
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Second sound velocity

A super�uid can also sustain the second
sound (entropy wave as opposed to density
wave). Using the same approximation as
before, we model the free energy as:

Fsp = � 2
�

X

k

ln
h
1+ e��Esp(k)

i

Fcol =
1
�

X

q
ln
h
1� e��Ecol(q)

i

�e second sound velocity is readily calculated from the entropy as:

S = �(@F/@T)N ,L2 c2 =

vuut
1
m

S̄2⇣
@S̄
@T

⌘

N ,L2

ns
nn
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Conclusions

• A theoretical description of an interacting Fermi gas has been developed
using a path integral formulation, consisting of a mean-�eld theory and of
Gaussian �uctuations for the order parameter.

• It has been shown that the theoretical treatment of a 2D Fermi gas requires
the inclusion of Gaussian �uctuations.

• �is approach shows good agreement with experimental data (equation of
state, BKT critical temperature, �rst sound), other predictions are open to
veri�cation (second sound).

• �is treatment can be extended to 2D systems with BCS-like pairing
(bilayers of polar molecules, exciton-polariton condensates, etc.)
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�anks for your a�ention.

(�ese slides are available at h�p://bighin.com)
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