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Outline

Introduction and motivation: BCS-BEC crossover in 2D.

Theoretical description of a 2D Fermi gas using the path integral
formalism: mean-field and Gaussian fluctuations.

The role of fluctuations: the composite boson limit.

Results and comparison with experimental data:

Equation of state

First sound

Second sound

Berezinskii-Kosterlitz-Thouless critical temperature.
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Main reference: GB and L. Salasnich, Phys. Rev. B 93, 014519 (2016).
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The BCS-BEC crossover (2

In 2004 the BCS-BEC crossover has been observed with ultracold gases made
of fermionic “°K and ®Li alkali-metal atoms. The fermion-fermion attractive
interaction can be tuned (using a Feshbach resonance), from weakly to
strongly interacting.

BCS regime: weakly interacting BEC regime: tightly bound bosonic
Cooper pairs. molecules.
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The BCS-BEC crossover (2

An additional laser confinement can be

used to create a quasi-2D pancake m

geometry, trapping the fermions in the r «
antinodes of a standing optical wave.

1
Bose Strong %
0.9 Interaction E E% -
I L o

In 2014 the 2D BCS-BEC crossover has
been observed! with a quasi-2D Fermi
gas of °Li atoms with widely tunable
s-wave interaction. The pressure P

I Y/gf versus the gas parameter ag/n has
*

e Formi been measured.

1y, Makhalov, K. Martiyanov, and A. Turlapov, PRL 112, 045301 (2014).
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The BCS-BEC crossover in 2D q/2)

Many properties of 2D Fermi condensates are currently being studied:

¢ Imaging of the atomic cloud’.
e Equation of state.

e Recently (June 2015) the direct observation of the BKT transition has been
reported?.

e Dynamic properties: sound velocity.

imaging
beam

Z

trapping

camera

IM. G. Ries et al,, Phys. Rev. Lett. 114, 230401 (2015)
2p. A. Murthy et al., Phys. Rev. Lett. 115, 010401 (2015).
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The BCS-BEC crossover in 2D q/2)

Many properties of 2D Fermi condensates are currently being studied:
¢ Imaging of the atomic cloud'.
e Equation of state.

¢ Very recently (June 2015) the direct observation of the BKT
transition has been reported?.

e Dynamic properties: sound velocity.

First-order correlation function g (r)

o0 1
r (um) e

IM. G. Ries et al,, Phys. Rev. Lett. 114, 230401 (2015)
2p. A. Murthy et al., Phys. Rev. Lett. 115, 010401 (2015).
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The BCS-BEC crossover in 2D @)

Why is the 2D case interesting from the theory point of view?
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The BCS-BEC crossover in 2D @)

Why is the 2D case interesting from the theory point of view?

e Qualitatively new physics: a bound state is always present.
e Berezinskii-Kosterlitz-Thouless mechanism:
o Mermin-Wagner-Hohenberg theorem: no condensation at finite temperature,
no off-diagonal long-range order.
o Algebraic decay of correlation functions (exp(if(r)) exp(i0(0))) ~ |r| ™"
o Transition to the normal state at a finite temperature Tpxr.
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The BCS-BEC crossover in 2D @)

Why is the 2D case interesting from the theory point of view?

e Qualitatively new physics: a bound state is always present.
e Berezinskii-Kosterlitz-Thouless mechanism:
o Mermin-Wagner-Hohenberg theorem: no condensation at finite temperature,
no off-diagonal long-range order.
o Algebraic decay of correlation functions (exp(if(r)) exp(i0(0))) ~ |r| ™"
o Transition to the normal state at a finite temperature Tpxr.
e The fluctuations are more relevant for lower dimensionalities. The mean
field theory can correctly describe (to some extent) the crossover in 3D, we
expect it not to work at all in 2D.
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The BCS-BEC crossover in 2D @)

Why is the 2D case interesting from the theory point of view?
e Qualitatively new physics: a bound state is always present.
o Berezinskii-Kosterlitz-Thouless mechanism:
o Mermin-Wagner-Hohenberg theorem: no condensation at finite temperature,
no off-diagonal long-range order.
o Algebraic decay of correlation functions (exp(if(r)) exp(i6(0))) ~ |r| ™"
o Transition to the normal state at a finite temperature Tpxr.
e The fluctuations are more relevant for lower dimensionalities. The mean
field theory can correctly describe (to some extent) the crossover in 3D, we
expect it not to work at all in 2D.

Example: theoretically-derived 3D
condensate fraction as a function of
y = (kras) ™! compared to
experimental data (MIT, Zwierlein

1 group). From L. Salasnich et al., PRA
< 72, 023621 (2005).

S s

condensed fraction

S
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The BCS-BEC crossover in 2D @)

Why is the 2D case interesting from the theory point of view?

e Qualitatively new physics: a bound state is always present.
e Berezinskii-Kosterlitz-Thouless mechanism:
o Mermin-Wagner-Hohenberg theorem: no condensation at finite temperature,
no off-diagonal long-range order.
o Algebraic decay of correlation functions (exp(if(r)) exp(i0(0))) ~ |r| ™"
o Transition to the normal state at a finite temperature Tpxr.
e The fluctuations are more relevant for lower dimensionalities. The mean
field theory can correctly describe (to some extent) the crossover in 3D, we
expect it not to work at all in 2D.

e The physics of the BCS-BEC crossover is also relevant in the description of
many different systems (bilayers of dipolar atoms, exciton-polariton
condensates, thin *He films). It may also be relevant for the description of
high-T, cuprates as the scaled correlation length (kr&y ~5 for YBCO and
kr&y ~ 10 for LSCO) lies between the BCS (kr&; ~ 10%) and BEC (kp&, < 1)
regimes.
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Path integral description of a Fermi gas s

The partition function Z of a uniform system at temperature T, in a
d-dimensional volume LY, and with chemical potential y reads

— [ Duu DG st

Fermions are described by anticommuting Grassmann fields, 1, (x, 7) and the
imaginary time goes from 0 to i3, where § = + =. Action:

S= -+Sint

e Action for a free particle:

dr [ d h Wit
S - || [ ' Y 00) [y~ 1o ] o

2m
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Path integral description of a Fermi gas s

The partition function Z of a uniform system at temperature T, in a
d-dimensional volume LY, and with chemical potential y reads

2= [ Do D e o

Fermions are described by anticommuting Grassmann fields, ¢, (x, 7) and the

imaginary time goes from 0 to i3, where = %T Action:

S = Sgree + .

e Interaction term:

hB _ _
_ = /0 dr / dddey wT (Xa 7)% (Y7 T) V(X_Y)wi (Y7 TWT (X7 T)

For a dilute gas one can use V(x —y) = god(x — y), where gy < 0 is the
attractive strength of the s-wave coupling.
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Path integral description of a Fermi gas e

How to treat the quartic interaction term ~ 1)*?

e We use a Hubbard-Stratonovich transformation, introducing the auxiliary

field A(x) and the shorthand x = (x, 7).

e The interaction between fermions is described in terms of an exchange
boson.

8 of 32



Path integral description of a Fermi gas e

How to treat the quartic interaction term ~ 1)*?

e We use a Hubbard-Stratonovich transformation, introducing the auxiliary
field A(x) and the shorthand x = (x, 7).

e The interaction between fermions is described in terms of an exchange
boson.

8 of 32




Path integral description of a Fermi gas e

How to treat the quartic interaction term ~ 1)*?
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field A(x) and the shorthand x = (x, 7).

e The interaction between fermions is described in terms of an exchange
boson.

o8& J dx Pr (DL ()Y () (x) /DADA ol & (%+A¢UM+A1@¢%)

8 of 32



Path integral description of a Fermi gas e

How to treat the quartic interaction term ~ 1)*?
e We use a Hubbard-Stratonovich transformation, introducing the auxiliary
field A(x) and the shorthand x = (x, 7).

e The interaction between fermions is described in terms of an exchange
boson.

o8& J dx Pr (DL ()Y () (x) /DADA ol & (%+A¢L¢¢+A1@ﬁh)

Remarks:

e Essentially a Gaussian integral.
e Physical meaning of the transformation: A ~ 1), as in the BCS theory a
finite expectation value signals the onset of pairing.
e Result: the quartic interaction is decoupled, but we have introduced a new
field, hopefully we can treat in perturbatively.
8 of 32
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Path integral description of a Fermi gas )

After the H/S transformation the partition function can be recast in an elegant
way using the Nambu-Gor’kov spinors (¥ (x) = (¢4(x) v,(x)) h

= /DA'DADwUDQZJU exp [/ dx (\Il(x) [—G*l]x\I/(x) — |A;:)|-)]

The integration over the fermionic fields 9/, 1, can now be carried out
exactly, being the action quadratic form in the fermionic fields, yielding:

ren(-67) + [ ax 2 ]

The complete physics of the system is encoded in the Green’s function G.

o= (M )

Z = / DADA exp

W1th§—— VZ —u
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The correlation functions generating functional

Let us consider for simplicity the case with a constant, uniform A. Let
us construct a generating functional by adding source terms to the par-
tition function Z = [ DyYDy exp(—z/;iG;Iz/Jj) and integrating out the
fermionic fields (i, j can be any index: position, spin, Nambu space)

Zh | = / DyDipePC; Tt T — get(G 1) eTi®r%

Differentiating twice w.r.t. the sources ones sees that the Green function
G is the 2-point function

1 &

-z = (V) = G,
Z 51,00, . (Waths) b

J=J=0

and by applying the same strategy multiple times and subsequently us-
ing Wick’s theorem one can derive n-point functions in terms of G.

10 of 32

Y Yy |



In the present case the Green’s function G is a 2 X 2 matrix in Nambu space,
and corresponds to the (imaginary-) time-ordered expectation values for
fermionic fields, here G

(Tt (Tw0) _ (G F
60 = (T (rancmon) = (7 &)

11 of 32

Y a



In the present case the Green’s function G is a 2 X 2 matrix in Nambu space,
and corresponds to the (imaginary-) time-ordered expectation values for
fermionic fields, here G

(Tt (Tw0) _ (G F
60 = (T (rancmon) = (7 &)

Z = /DADA exp

Trln(—Gfl) + /dx ﬁ]

8o
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Path integral description of a Fermi gas wa)

How to tackle the problem? Idea: separate a leading (and integrable)

contribution from a small contribution (to be treated perturbatively).
We expand the pairing field A around a constant and uniform saddle-point

configuration A, as
Mlezam Geld
U\/u‘é@km IO
A =G+ . Fluetuations

it follows that

(%558 )= (%4 g (e %)

-G, [_Gfl] L

sp
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Mean field and fluctuations @)

We separate the mean-field and fluctuations components in the partition
function, too! The In(—G~!) becomes

In(-G™') = ln(—Gs;l) + In (1 - Gy,F)
expanding the logarithm up to the second order in the fluctuation fields n we
obtain

< (Gg,F)" 1
In(1-GyF) = 3 % ~ =6 — 16, FG,F + O(r)
n=1

Final result: mean-field and Gaussian-level partition functions

/ DADAEM M (-C / DADAE (=65 in(1=6oF) =z 1z

with: 2
me _ det( Gspl) Zﬂ — /D’I?D’f] e_% Tr(GspFGspF)+f dxlzT
130f32
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Mean field and fluctuations @)

Using Z = e~ 7, where () is the thermodynamic grand potential, one gets the
mean-field equation of state:

mL? 1,
2w h? (e EEB)

(1) = —

where €p is the binding energy of a pair, and the Gaussian-level contribution
to the grand potential (Q = (q,iQ2,) and 2, are Bose Matsubara frequencies.):

Qap, Ag) = Zln det(M

e At mean-field the algebra is very 51mple, k-integrations are analytical.

o The fluctuations algebra on the other hand is quite involved.
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e At mean-field the algebra is very 51mple, k-integrations are analytical.

o The fluctuations algebra on the other hand is quite involved.

. tanh(8E/2) 1
M Q) = —A2
12(9, 12m) 0 Xk: 2B, (i — Ex + Bt q) (i — Bk — Firq) Iy

1
+
(IQm + B — Ek+q)(iQm + B + Ek.,Lq)
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R*k?
szm—/ﬁ B = /& + A}
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Single particle and collective excitations

One finds that in the gas of paired fermions there are two kinds of elementary
excitations: fermionic single-particle excitations with energy

h2k? 2
Esp<k>=\/( o 1) A5,

where A is the pairing gap, and bosonic collective excitations with energy

h2 g2 h2 g2
Ecol(q) = \/% <)\ % + 2mc§> 5

where A is the first correction to the familiar low-momentum phonon
dispersion E.o(q) ~ c;fiq and c; is the sound velocity.

15 of 32
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The extended BCS equations

Gap equation

The saddle point condition determines A,. —— =0

Number equation

The number equation is used to implicitly determine p as a function of
the number of particles N.

N==%.=""on op 0h, On

The gap and number equation are jointly solved and determine the chemical
potential 1 and the pairing gap A, as a function of the crossover.

16 of 32
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Bound state equation

In 2D the strength of the attractive s-wave potential is gy < 0, which can be
implicitely related to the bound state energy:

1 1 1

go_ﬁ k €k+%€B.

with ¢, = h?k?/(2m). In 2D, as opposed to the 3D case, a bound state exists
even for arbitrarily weak interactions, making ep a good variable to describe
the whole BCS-BEC crossover.

The binding energy € and the fermionic (2D) scattering length ayp are related
by the equation:
4h?

€= ——5
€Y maz,

1C. Mora and Y. Castin, Phys. Rev. A 67, 053615 (2003).
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The role of Gaussian fluctuations and collective
excitations: composite bosons @3

In the strongly interacting limit an attractive Fermi

gas maps to a gas of composite bosons with ®
chemical potential ug = 2(u + €5/2) and mass @ () o 7
mp = 2m. Residual interaction between bosons. @ @ @ ®
The present theory extends the BCS theory to the % =l @ oo o®
strong-coupling regime, following Leggett’s e - X
original intuition. One may want to check: is the @ -
strong coupling limit correctly recovered at % &

mean-field? And at a Gaussian level?

18 of 32
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The role of Gaussian fluctuations and collective
excitations: composite bosons @2

In three dimensions:

e Even a mean-field theory may provide good precision in the intermediate
and BEC regime at T = 0, e.g. in the case of the condensate fraction.

e Residual interaction between bosons: a, = 24, (mean-field), a, = /34,
(Monte Carlo, fluctuations!, experiments).

o Finite temperature properties: only in the strictly BCS limit.

e Equation of state (from P. Pieri et al., Phys. Rev. B 70, 094508 (2004));
chemical potential p and pairing gap A, across the crossover, MF vs FL.

~0)/er

A(T:

05

W for >0 and wey/2 for <0

B
2-15-1-050 05 1 15 2
4
(keap) (keag)"

0
2-15-1:05 005 1 15 2

11, Salasnich and GB, Phys. Rev. A 91, 033610 (2015).
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The role of Gaussian fluctuations and collective
excitations: composite bosons ¢

In two dimensions:

o The role of the fluctations is, as expected, more relevant. The mean-field
theory is expected to work just in strictly BCS limit.

e It has been shown that the inclusion of Gaussian fluctuations at T = 0
reproduces Popov’s equation of state of 2D bosons, with
ag = ap/(27e1) ~ 0.551ar, in agreement with Monte Carlo calculations.

e The equation of state of composite 2D bosons is radically different.

rrrrrrr

7777777777777

11, Salasnich and F. Toigo, Phys. Rev. A 91, 011604(R) (2015)
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The role of Gaussian fluctuations and collective
excitations: composite bosons ¢

In two dimensions:

o The role of the fluctations is, as expected, more relevant. The mean-field
theory is expected to work just in strictly BCS limit.

e It has been shown that the inclusion of Gaussian fluctuations at T = 0
reproduces Popov’s equation of state of 2D bosons, with
ag = ap/(22e1) ~ 0.551ar, in agreement with Monte Carlo calculations.

e The equation of state of composite 2D bosons is radically different.

7

Gaussian fluctuations are cru-

cial in correctly describing the
= properties of a 2D Fermi gas in
the intermediate and strong-
i : = coupling regimes!

\ J

11, Salasnich and F. Toigo, Phys. Rev. A 91, 011604(R) (2015)
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Theory vs. experiments
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Equation of state

The pressure measured as a function of the adimensional gas parameter
ag./np. Experimental data, as shown in the introduction (red curve: smooth
approximation of pure 2D Monte Carlo simulation) vs. the present model
(gray dashed curve: mean-field, black curve: with fluctuations)

! Bose Strong %
0.9 Interaction E E -
E L o>
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Equation of state

The pressure measured as a function of the adimensional gas parameter
ag./np. Experimental data, as shown in the introduction (red curve: smooth
approximation of pure 2D Monte Carlo simulation) vs. the present model
(gray dashed curve: mean-field, black curve: with fluctuations)
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0.9 Interaction E E
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Equation of state

The pressure measured as a function of the adimensional gas parameter
ag./np. Experimental data, as shown in the introduction (red curve: smooth
approximation of pure 2D Monte Carlo simulation) vs. the present model
(gray dashed curve: mean-field, black curve: with fluctuations)

1 : 1.0 T
Bose Strong %
09) Interaction E E
0.8 E L o g 0.8
07
Py 09] EO.S
Prideal a
o & 4] [— Gaussian EOS
o ; l MF EOS
03] ‘f
0.2
0.2
Ol* * Fermi e e
I i m 0050010010 0.100 1 10
v agVns

See also: L. He et al., Phys. Rev. A 92, 023620 (2015).
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First sound velocity )

The first sound velocity ¢, can be read from the collective excitations spectrum:

hz 2 hz 2
Ecnl(q) - \/_q <)\ —q + ZmCSZ)

2m 2m

Alternatively the T = 0 sound velocity is calculated through the

thermodynamics formula:
[ nou
“=\ mon

e The mean-field result, neglecting Gaussian fluctuations.
e The composite boson limit, obtained through Popov’s equation of state for
2D interacting bosons

We compare our result with:

), 4mh? ng

s — T2 /7 .\
myg 11’1( 12)
nBaB

e Preliminary experimental data (University of Hamburg).
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First sound velocity @)

1.0]
0.8

Sos

i
© 04

061.00 0.02 0.04 0.06 0.08 0.10 0.12
¢ TITF

log(es/€er)
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Away from the weak-coupling
limit, in the intermediate region
and in the BEC limit the sound
velocity c; is strongly affected by
the Gaussian contribution to the
equation of state.

Strong coupling: composite boson
limit.

Quite good agreement with
(preliminary) experimental data.

The temperature dependence
(inset) is very weak.
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BKT critical temperature (4

The Berezinskii-Kosterlitz-Thouless (BKT) transition separated the
low-temperature phase characterized by bound vortex-antivortex pairs from
the high-temperature phase characterized by a proliferation of free vortices.

Superfluid (T<Tgyy) Normal state (T>Tgyy)
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BKT critical temperature (4

The Berezinskii-Kosterlitz-Thouless (BKT) transition separated the
low-temperature phase characterized by bound vortex-antivortex pairs from
the high-temperature phase characterized by a proliferation of free vortices.

The BKT critical temperature is found using the Kosterlitz-Nelson (KN)
condition:

2
kgTpxr = —ng(T,
B1BKT sm ns( BKT)

250f 32
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BKT critical temperature (4

The Berezinskii-Kosterlitz-Thouless (BKT) transition separated the
low-temperature phase characterized by bound vortex-antivortex pairs from
the high-temperature phase characterized by a proliferation of free vortices.

The BKT critical temperature is found using the Kosterlitz-Nelson (KN)
condition:

hZ
kg T, = —n(T
B1BKT = sm ns( BKT)

The superfluid density is obtained using Landau’s quasiparticle excitations
formula for fermionic and bosonic excitations:

d2k B B [ dq BBl
n d nb = g
n S = /8/ erBEk + 1) an Nn b 2 (27T)2q (eBEcol = 1)2

then ny = n — n, 5 — np,p.

250f 32
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BKT critical temperature ()

Main approximation

The single-particle and collective contributions are not independent, as
there is hybridization due to Landau damping at finite temperature.

The effect of hybridization is most prominent at T ~ ¢f, here in the
superfluid phase, below Tgkr, one has kT < 0.125¢r and the hybridiza-
tion can be safely ignored.

Previous results a posteriori confirm that hybridization should be ne-
glectable.

26 of 32
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BKT critical temperature (4

We can compare the theory with recently obtained experimental data?:

e The agreement with experimental 025
data is very good in the
intermediate and strongly coupled
regimes.

e The agreement for two points in
the weakly-coupled regime is not
as good, but still within 1.20.

Tekt/€F

e However, under very general
assumptions, Tpxr < 0.125¢f if the

Kosterlitz-Nelson condition holds. 0.00le—— s - o5 o

log(€g/er)

IP. A. Murthy et al., Phys. Rev. Lett. 115, 010401 (2015).
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BKT critical temperature (9

. . . . . 2
Composite boson limit: combining ag = Wﬂp, €g = e%ﬁﬁ we get:

€3 K The strongly bound regime maps to the

pu = N K == 0.061 low density limit of a Bose gas.

Prokofev and Svistunov, using a mixed analytical and Monte Carlo approach,
have found for 2D bosons:

0.25

T . 2T ng Use — 4m !  Gaussian E0S
BKT = ——————— eff = — 5~ 020 i“ ~--- Prokofev and Svistunov

mg log(%UefJ mp log(1/npaj)
with £ ~ 380. Putting everything all together 010
one obtains an estimate for Tgxr valid in the
strongly-coupled regime. How does it
compares to the present theory and to 000 SR
experimental data? log(és/er)

Texr/€r

0.05
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Vortices

Preliminary study of the superfluid density renormalization due to the
contribution of vortices, currently in progress.

" Kosterlitz renormalization group equations
0.8
—— Superfluid density M — 3.,2 3
sos Bk ot { off oot
£ e S =2 - 7K () +0(y)
204 condition
3 With initial conditions K(I =0) = ny()/T
02 and y(I = 0) = exp(—7n,/2T), we
o i calculate K(00).

0.00 0.05 0.10 0.15
TTe
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Vortices

Preliminary study of the superfluid density renormalization due to the
contribution of vortices, currently in progress.

1.0,
0.8
— Supertd densiy The BKT critical temperature is
goe Py slightly lower, especially in the Bose
€ — Kasteritg-Nelson regime, as an effect of the renormal-
< 0.4
ized superfluid density.
02) . .
Is it possible to calculate £ ~ 3807
000.00 0.05 ‘ 0.10 0.15 <

TiTe
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Second sound velocity

A superfluid can also sustain the second
sound (entropy wave as opposed to density
wave). Using the same approximation as
before, we model the free energy as:

2
Fy, = ] Zln [1 + e_BE‘P(k)}
k

1
Fcnl = = Zln [1 — C_BECDl(q):|
ﬁ q
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Conclusions

e A theoretical description of an interacting Fermi gas has been developed
using a path integral formulation, consisting of a mean-field theory and of
Gaussian fluctuations for the order parameter.

e It has been shown that the theoretical treatment of a 2D Fermi gas requires
the inclusion of Gaussian fluctuations.

e This approach shows good agreement with experimental data (equation of
state, BKT critical temperature, first sound), other predictions are open to
verification (second sound).

e This treatment can be extended to 2D systems with BCS-like pairing
(bilayers of polar molecules, exciton-polariton condensates, etc.)

310f32
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Thanks for your attention.

(These slides are available at http://bighin.com)
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