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Quantum impurities

One particle (or a few particles) interacting with a many-body environment.

Structureless impurity: translational
degrees of freedom/linear momentum
exchange with the bath.

Most common cases: , .

Image from: F. Chevy, Physics 9, 86.

Composite impurity, e.g. a diatomic molecule:
translational and rotational degrees of
freedom/linear and angular momentum
exchange.
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This scenario can be formalized in terms of
quasiparticles using the polaron and the Fröh-
lich Hamiltonian.
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This scenario can be formalized in terms of
quasiparticles using the polaron and the Fröh-
lich Hamiltonian.

This talk:

1. A rotating impurity as a quasiparticle.

2. Feynman diagrams.

3. Diagrammatic Monte Carlo.



The angulon

A composite, rotating impurity in a bosonic environment can be described by
the angulon Hamiltonian1,2,3,4 (angular momentum basis: k → {k, λ, µ}):

Ĥ = BĴ2︸︷︷︸
molecule

+
∑
kλµ

ωkb̂
†
kλµb̂kλµ︸ ︷︷ ︸

phonons

+
∑
kλµ

Uλ(k)
[
Y∗λµ(θ̂, ϕ̂)b̂

†
kλµ + Yλµ(θ̂, ϕ̂)b̂kλµ

]
︸ ︷︷ ︸

molecule-phonon interaction

• Linear molecule.

• Derived rigorously for a molecule in a
weakly-interacting BEC1.

• Phenomenological model for a
molecule in any kind of bosonic
bath3.

1R. Schmidt and M. Lemeshko, Phys. Rev. Lett. 114, 203001 (2015).
2R. Schmidt and M. Lemeshko, Phys. Rev. X 6, 011012 (2016).
3M. Lemeshko, Phys. Rev. Lett. 118, 095301 (2017).
4Y. Shchadilova, ”Viewpoint: A New Angle on Quantum Impurities”, Physics 10, 20 (2017). 3/11



Definire a voce tutte le quantità.
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molecule-phonon interaction

• Linear molecule.

• Derived rigorously for a molecule in a
weakly-interacting BEC1.

• Phenomenological model for a
molecule in any kind of bosonic
bath3.

λ = 0: spherically
symmetric part.
λ ≥ 1 anisotropic
part.

1R. Schmidt and M. Lemeshko, Phys. Rev. Lett. 114, 203001 (2015).
2R. Schmidt and M. Lemeshko, Phys. Rev. X 6, 011012 (2016).
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Feynman diagrams

= + +

+ + . . .

How do we describemolecular rotationswith Feynman diagrams? How does
angular momentum enter this picture?

GB and M. Lemeshko, Phys. Rev. B 96, 419 (2017).
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j,m: angular mo-
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jection along z axis.
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Feynman diagrams

= + +

+ + . . .

How do we describemolecular rotationswith Feynman diagrams? How does
angular momentum enter this picture?

Angulon

Angular momentum-
dependent propagators:
G0,j and Dj
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Feynman diagrams

= + +

+ + . . .

How do we describemolecular rotationswith Feynman diagrams? How does
angular momentum enter this picture?

Angulon

A 3j symbol for
each vertex:(

j1 j2 j3
m1 m2 m3

)

GB and M. Lemeshko, Phys. Rev. B 96, 419 (2017).
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Diagrammatic Monte Carlo

Numerical technique for sampling over all Feynman diagrams1.

= + +

+ + … + +

+ + …

Up to now: structureless particles (Fröhlich polaron, Holstein polaron), or
particles with a very simple internal structure (e.g. spin 1/2).

This talk: molecules2.

1N. V. Prokof’ev and B. V. Svistunov, Phys. Rev. Lett. 81, 2514 (1998).
2GB, T.V. Tscherbul, M. Lemeshko, Phys. Rev. Lett. 121, 165301 (2018). 5/11



Diagrammatic Monte Carlo

Green’s function

G(τ) = + +

+ + . . . = all Feynman diagrams

DiagMC idea: set up a stochastic process sampling among all diagrams1.

Configuration space: diagram topology, phonons internal variables, times,
etc... Number of variables varies with the topology!

How: ergodicity, detailed balancew1p(1 → 2) = w2p(2 → 1)

Result: each configuration is visited with probability∝ its weight.
1N. V. Prokof’ev and B. V. Svistunov, Phys. Rev. Lett. 81, 2514 (1998).
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Updates

Usually (e.g. Fröhich polaron) three updates are enough to span the whole
configuration space:

Add update: a new arc is added to a
diagram.
Remove update: an arc is removed
from the diagram.
Change update: modifies the total
length of the diagram.

Are these three updates enough for a molecular rotations?
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Are three updates enough for molecular rotations?

Moving particle: linear momentum
circulating on lines.

Rotating particle: angular momentum
circulating on lines.

At higher orders the problem gets worse!

The configuration space is bigger! Another update is needed to cover it.

Shuffle update: select one 1-particle-irreducible component, shuffle the
momenta couplings to another allowed configuration.

k⃗ and q⃗ fully deter-
mine k⃗− q⃗

j and λ can sum
in many different
ways: |j−λ|, . . . j+λ

8/11
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Results

The ground-state energy of the angulon Hamiltonian obtained using DiagMC1 as
a function of the dimensionless bath density, ñ, in comparison with the
weak-coupling theory2 and the strong-coupling theory3.

The energy is obtained by
fitting the
long-imaginary-time
behaviour of Gj with
Gj(τ) = Zj exp(−Ej τ).

Inset: energy of the L = 0, 1, 2
states.

1GB, T.V. Tscherbul, M. Lemeshko, Phys. Rev. Lett. 121, 165301 (2018).
2R. Schmidt and M. Lemeshko, Phys. Rev. Lett. 114, 203001 (2015).
3R. Schmidt and M. Lemeshko, Phys. Rev. X 6, 011012 (2016).
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Conclusions

• A numerically-exact approach to quantummany-body systems involving
coupled angular momenta.

• Works in continuous time and in the thermodynamic limit: no finite-size
effects or systematic errors.

• Future: more realistic systems. Real-time dynamics.

10/11
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This work was supported by a Lise
Meitner Fellowship of the Austrian
Science Fund (FWF), project Nr.
M2461-N27.
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Backup slide # 1

Free rotor propagator G0,λ(E) =
1

E− Bλ(λ+ 1) + iδ

Interaction propagator χλ(E) =
∑
k

|Uλ(k)|2

E− ωk + iδ
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