Diagrammatic Monte Carlo approach to angular momentum in quantum many-body systems

<u>G. Bighin</u>¹, T.V. Tscherbul² and M. Lemeshko¹ Institute of Science and Technology Austria ²University of Nevada, Reno

APS March Meeting, Boston, March 5th, 2019

Structureless impurity: translational degrees of freedom/linear momentum exchange with the bath.

Most common cases: electron in a solid, atomic impurities in a BEC.

Structureless impurity: translational degrees of freedom/linear momentum exchange with the bath.

Most common cases: electron in a solid, atomic impurities in a BEC.

Structureless impurity: translational degrees of freedom/linear momentum exchange with the bath.

Most common cases: electron in a solid, atomic impurities in a BEC.

Quantum impurities

One particle (or a few particles) interacting with a many-body environment.

Quantum impurities

One particle (or a few particles) interacting with a many-body environment.

Image from: F. Chevy, Physics 9, 86.

Composite impurity, e.g. a diatomic molecule: translational *and rotational* degrees of freedom/linear and angular momentum exchange.

Quantum impurities

One particle (or a few particles) interacting with a many-body environment.

The angulon

-[

A composite, rotating impurity in a bosonic environment can be described by the angulon Hamiltonian^{1,2,3,4} (angular momentum basis: $\mathbf{k} \rightarrow \{k, \lambda, \mu\}$):

$$\hat{H} = \underbrace{B\hat{\mathbf{J}}^{2}}_{\text{molecule}} + \underbrace{\sum_{k\lambda\mu} \omega_{k} \hat{b}^{\dagger}_{k\lambda\mu} \hat{b}_{k\lambda\mu}}_{\text{phonons}} + \underbrace{\sum_{k\lambda\mu} U_{\lambda}(k) \left[Y^{*}_{\lambda\mu}(\hat{\theta}, \hat{\phi}) \hat{b}^{\dagger}_{k\lambda\mu} + Y_{\lambda\mu}(\hat{\theta}, \hat{\phi}) \hat{b}_{k\lambda\mu}\right]}_{\text{molecule-phonon interaction}}$$

- Linear molecule.
- Derived rigorously for a molecule in a weakly-interacting BEC¹.
- Phenomenological model for a molecule in any kind of bosonic bath³.

¹R. Schmidt and M. Lemeshko, Phys. Rev. Lett. **114**, 203001 (2015).

- ²R. Schmidt and M. Lemeshko, Phys. Rev. X 6, 011012 (2016).
- ³M. Lemeshko, Phys. Rev. Lett. **118**, 095301 (2017).

⁴Y. Shchadilova, "Viewpoint: A New Angle on Quantum Impurities", Physics **10**, 20 (2017).

The angulon

A composite, rotating impurity in a bosonic environment can be described by the angulon Hamiltonian^{1,2,3,4} (angular momentum basis: $\mathbf{k} \rightarrow \{k, \lambda, \mu\}$):

molecule in any kind of bosonic bath³.

- ¹R. Schmidt and M. Lemeshko, Phys. Rev. Lett. **114**, 203001 (2015).
- ²R. Schmidt and M. Lemeshko, Phys. Rev. X 6, 011012 (2016).
- ³M. Lemeshko, Phys. Rev. Lett. **118**, 095301 (2017).

⁴Y. Shchadilova, "Viewpoint: A New Angle on Quantum Impurities", Physics 10, 20 (2017).

How do we describe **molecular rotations** with Feynman diagrams? How does **angular momentum** enter this picture?

How do we describe **molecular rotations** with Feynman diagrams? How does **angular momentum** enter this picture?

Angulon

Diagrammatic Monte Carlo

Numerical technique for sampling over all Feynman diagrams¹.

Up to now: structureless particles (Fröhlich polaron, Holstein polaron), or particles with a very simple internal structure (e.g. spin 1/2).

This talk: molecules².

¹N. V. Prokof'ev and B. V. Svistunov, Phys. Rev. Lett. **81**, 2514 (1998). ²GB, T.V. Tscherbul, M. Lemeshko, Phys. Rev. Lett. **121**, 165301 (2018).

Diagrammatic Monte Carlo

DiagMC idea: set up a stochastic process sampling among all diagrams¹.

Configuration space: diagram topology, phonons internal variables, times, etc... Number of variables varies with the topology!

How: ergodicity, detailed balance $w_1p(1 \rightarrow 2) = w_2p(2 \rightarrow 1)$

Result: each configuration is visited with probability \propto its weight.

¹N. V. Prokof'ev and B. V. Svistunov, Phys. Rev. Lett. 81, 2514 (1998).

Add update: a new arc is added to a diagram.

Updates

Usually (e.g. Fröhich polaron) three updates are enough to span the whole configuration space:

Add update: a new arc is added to a diagram.

Updates

Usually (e.g. Fröhich polaron) three updates are enough to span the whole configuration space:

Add update: a new arc is added to a diagram.

Updates

Usually (e.g. Fröhich polaron) three updates are enough to span the whole configuration space:

Add update: a new arc is added to a diagram. Remove update: an arc is removed from the diagram.

Add update: a new arc is added to a diagram. Remove update: an arc is removed from the diagram.

Add update: a new arc is added to a diagram. Remove update: an arc is removed from the diagram. Change update: modifies the total length of the diagram.

Add update: a new arc is added to a diagram. Remove update: an arc is removed from the diagram. Change update: modifies the total length of the diagram.

Add update: a new arc is added to a diagram. Remove update: an arc is removed from the diagram. Change update: modifies the total length of the diagram.

Add update: a new arc is added to a diagram. Remove update: an arc is removed from the diagram. Change update: modifies the total length of the diagram.

Are these three updates enough for a molecular rotations?

Are three updates enough for molecular rotations?

Rotating particle: angular momentum circulating on lines.

Are three updates enough for molecular rotations?

Rotating particle: angular momentum circulating on lines.

At higher orders the problem gets worse!

Shuffle update: select one 1-particle-irreducible component, shuffle the momenta couplings to another allowed configuration.

Results

The ground-state energy of the angulon Hamiltonian obtained using DiagMC¹ as a function of the dimensionless bath density, \tilde{n} , in comparison with the weak-coupling theory² and the strong-coupling theory³.

The energy is obtained by fitting the long-imaginary-time behaviour of G_j with $G_j(\tau) = Z_j \exp(-\frac{E_j}{\tau}\tau).$

Inset: energy of the L = 0, 1, 2 states.

¹GB, T.V. Tscherbul, M. Lemeshko, Phys. Rev. Lett. **121**, 165301 (2018). ²R. Schmidt and M. Lemeshko, Phys. Rev. Lett. **114**, 203001 (2015).

³R. Schmidt and M. Lemeshko, Phys. Rev. X 6, 011012 (2016).

Results

The ground-state energy of the angulon Hamiltonian obtained using DiagMC¹ as a function of the dimensionless bath density, \tilde{n} , in comparison with the weak-coupling theory² and the strong-coupling theory³.

The energy is obtained by fitting the long-imaginary-time behaviour of G_j with $G_j(\tau) = Z_j \exp(-E_j \tau)$.

Inset: energy of the L = 0, 1, 2 states.

¹GB, T.V. Tscherbul, M. Lemeshko, Phys. Rev. Lett. **121**, 165301 (2018). ²R. Schmidt and M. Lemeshko, Phys. Rev. Lett. **114**, 203001 (2015).

- A numerically-exact approach to quantum many-body systems involving coupled angular momenta.
- Works in continuous time and in the thermodynamic limit: no finite-size effects or systematic errors.
- Future: more realistic systems. Real-time dynamics.

Thank you for your attention.

Der Wissenschaftsfonds.

This work was supported by a Lise Meitner Fellowship of the Austrian Science Fund (FWF), project Nr. M2461-N27. Free rotor propagator

$$G_{0,\lambda}(E) = rac{1}{E - B\lambda(\lambda + 1) + \mathrm{i}\delta}$$

Interaction propagator

$$\chi_{\lambda}(E) = \sum_{k} \frac{|U_{\lambda}(k)|^2}{E - \omega_k + \mathrm{i}\delta}$$