Diagrammatic Monte Carlo approach to angular momentum in quantum many-body systems

G. Bighin ${ }^{1}$, T.V. Tscherbul 2 and M. Lemeshko ${ }^{1}$
${ }^{1}$ Institute of Science and Technology Austria
${ }^{2}$ University of Nevada, Reno

APS March Meeting, Boston, March 5th, 2019

Quantum impurities

One particle (or a few particles) interacting with a many-body environment.

Quantum impurities

One particle (or a few particles) interacting with a many-body environment.

Structureless impurity: translational degrees of freedom/linear momentum exchange with the bath.

Most common cases: electron in a solid, atomic impurities in a BEC.

Quantum impurities

One particle (or a few particles) interacting with a many-body environment.

Structureless impurity: translational degrees of freedom/linear momentum exchange with the bath.

Most common cases: electron in a solid, atomic impurities in a BEC.

Image from: F. Chevy, Physics 9, 86.

Quantum impurities

One particle (or a few particles) interacting with a many-body environment.

Structureless impurity: translational degrees of freedom/linear momentum exchange with the bath.

Most common cases: electron in a solid, atomic impurities in a BEC.

Image from: F. Chevy, Physics 9, 86.

Quantum impurities

One particle (or a few particles) interacting with a many-body environment.

Image from: F. Chevy, Physics 9, 86.

Quantum impurities

One particle (or a few particles) interacting with a many-body environment.

Image from: F. Chevy, Physics 9, 86.

Composite impurity, e.g. a diatomic molecule: translational and rotational degrees of freedom/linear and angular momentum exchange.

Quantum impurities

One particle (or a few particles) interacting with a many-body environment.

Image from: F. Chevy, Physics 9, 86.

This talk:

1. A rotating impurity as a quasiparticle.
2. Feynman diagrams.
3. Diagrammatic Monte Carlo.
molecule:
um

The angulon

A composite, rotating impurity in a bosonic environment can be described by the angulon Hamiltonian ${ }^{1,2,3,4}$ (angular momentum basis: $\mathbf{k} \rightarrow\{k, \lambda, \mu\}$):

$$
\hat{H}=\underbrace{B \hat{\jmath}^{2}}_{\text {molecule }}+\underbrace{\sum_{k \lambda \mu} \omega_{k} \hat{b}_{k \lambda \mu}^{\dagger} \hat{b}_{k \lambda \mu}}_{\text {phonons }}+\underbrace{\sum_{k \lambda \mu} U_{\lambda}(k)\left[Y_{\lambda \mu}^{*}(\hat{\theta}, \hat{\phi}) \hat{b}_{k \lambda \mu}^{\dagger}+Y_{\lambda \mu}(\hat{\theta}, \hat{\phi}) \hat{b}_{k \lambda \mu}\right]}_{\text {molecule-phonon interaction }}
$$

- Linear molecule.
- Derived rigorously for a molecule in a weakly-interacting BEC ${ }^{1}$.
- Phenomenological model for a molecule in any kind of bosonic bath ${ }^{3}$.

${ }^{1}$ R. Schmidt and M. Lemeshko, Phys. Rev. Lett. 114, 203001 (2015).
${ }^{2}$ R. Schmidt and M. Lemeshko, Phys. Rev. X 6, 011012 (2016).
${ }^{3}$ M. Lemeshko, Phys. Rev. Lett. 118, 095301 (2017).
${ }^{4}$ Y. Shchadilova, "Viewpoint: A New Angle on Quantum Impurities", Physics 10, 20 (2017).

The angulon

A composite, rotating impurity in a bosonic environment can be described by the angulon Hamiltonian ${ }^{1,2,3,4}$ (angular momentum basis: $\mathbf{k} \rightarrow\{k, \lambda, \mu\}$):

${ }^{1}$ R. Schmidt and M. Lemeshko, Phys. Rev. Lett. 114, 203001 (2015).
${ }^{2}$ R. Schmidt and M. Lemeshko, Phys. Rev. X 6, 011012 (2016).
${ }^{3}$ M. Lemeshko, Phys. Rev. Lett. 118, 095301 (2017).
${ }^{4}$ Y. Shchadilova, "Viewpoint: A New Angle on Quantum Impurities", Physics 10, 20 (2017).

Feynman diagrams

How do we describe molecular rotations with Feynman diagrams? How does angular momentum enter this picture?

Feynman diagrams

How do we describe molecular rotations with Feynman diagrams? How does angular momentum enter this picture?

GB and M. Lemeshko, Phys. Rev. B 96, 419 (2017).

Feynman diagrams

How do we describe molecular rotations with Feynm: jection along z axis. s angular momentum enter this picture?

Angulon

Feynman diagrams

How do we describe molecular rotations with Feynman diagrams? How does angular momentum enter this picture?

GB and M. Lemeshko, Phys. Rev. B 96, 419 (2017).

Feynman diagrams

A $3 j$ symbol for each vertex: angular momentum enter this picture?

Angulon

GB and M. Lemeshko, Phys. Rev. B 96, 419 (2017).

Diagrammatic Monte Carlo

Numerical technique for sampling over all Feynman diagrams ${ }^{1}$.

Up to now: structureless particles (Fröhlich polaron, Holstein polaron), or particles with a very simple internal structure (e.g. spin $1 / 2$).

This talk: molecules ${ }^{2}$.

[^0]
Diagrammatic Monte Carlo

Green's function

DiagMC idea: set up a stochastic process sampling among all diagrams ${ }^{1}$.
Configuration space: diagram topology, phonons internal variables, times, etc... Number of variables varies with the topology!

How: ergodicity, detailed balance $w_{1} p(1 \rightarrow 2)=w_{2} p(2 \rightarrow 1)$
Result: each configuration is visited with probability \propto its weight.
${ }^{1}$ N. V. Prokof'ev and B. V. Svistunov, Phys. Rev. Lett. 81, 2514 (1998).

Updates

Usually (e.g. Fröhich polaron) three updates are enough to span the whole configuration space:

Updates

Usually (e.g. Fröhich polaron) three updates are enough to span the whole configuration space:

Add update: a new arc is added to a diagram.

Updates

Usually (e.g. Fröhich polaron) three updates are enough to span the whole configuration space:

Add update: a new arc is added to a diagram.

Updates

Usually (e.g. Fröhich polaron) three updates are enough to span the whole configuration space:

Add update: a new arc is added to a
 diagram.

Updates

Usually (e.g. Fröhich polaron) three updates are enough to span the whole configuration space:

Add update: a new arc is added to a
 diagram.
Remove update: an arc is removed from the diagram.

Updates

Usually (e.g. Fröhich polaron) three updates are enough to span the whole configuration space:

Add update: a new arc is added to a diagram.
Remove update: an arc is removed from the diagram.

Updates

Usually (e.g. Fröhich polaron) three updates are enough to span the whole configuration space:

Add update: a new arc is added to a diagram.
Remove update: an arc is removed from the diagram.
Change update: modifies the total length of the diagram.

Updates

Usually (e.g. Fröhich polaron) three updates are enough to span the whole configuration space:

Add update: a new arc is added to a diagram.
Remove update: an arc is removed from the diagram.
Change update: modifies the total length of the diagram.

Updates

Usually (e.g. Fröhich polaron) three updates are enough to span the whole configuration space:

Add update: a new arc is added to a diagram.
Remove update: an arc is removed from the diagram.
Change update: modifies the total length of the diagram.

Updates

Usually (e.g. Fröhich polaron) three updates are enough to span the whole configuration space:

Add update: a new arc is added to a diagram.
Remove update: an arc is removed from the diagram.
Change update: modifies the total length of the diagram.

Are these three updates enough for a molecular rotations?

Are three updates enough for molecular rotations?

Moving particle: linear momentum circulating on lines.

Rotating particle: angular momentum circulating on lines.

Are three updates enough for molecular rotations?

Moving particle: linear momentum circulating on lines.

Rotating particle: angular momentum circulating on lines.

At higher orders the problem gets worse!
The configuration space is bigger! Another update is needed to cover it.

Shuffle update: select one 1-particle-irreducible component, shuffle the momenta couplings to another allowed configuration.

Results

The ground-state energy of the angulon Hamiltonian obtained using DiagMC ${ }^{1}$ as a function of the dimensionless bath density, \tilde{n}, in comparison with the weak-coupling theory ${ }^{2}$ and the strong-coupling theory ${ }^{3}$.

The energy is obtained by fitting the
long-imaginary-time behaviour of G_{j} with $G_{j}(\tau)=Z_{j} \exp \left(-E_{j} \tau\right)$.

Inset: energy of the $L=0,1,2$ states.

${ }^{1}$ GB, T.V. Tscherbul, M. Lemeshko, Phys. Rev. Lett. 121, 165301 (2018).
${ }^{2}$ R. Schmidt and M. Lemeshko, Phys. Rev. Lett. 114, 203001 (2015).
${ }^{3}$ R. Schmidt and M. Lemeshko, Phys. Rev. X 6, 011012 (2016).

Results

The ground-state energy of the angulon Hamiltonian obtained using DiagMC ${ }^{1}$ as a function of the dimensionless bath density, \tilde{n}, in comparison with the weak-coupling theory ${ }^{2}$ and the strong-coupling theory ${ }^{3}$.

The energy is obtained by fitting the
long-imaginary-time behaviour of G_{j} with $G_{j}(\tau)=Z_{j} \exp \left(-E_{j} \tau\right)$.

Inset: energy of the $L=0,1,2$ states.

${ }^{1}$ GB, T.V. Tscherbul, M. Lemeshko, Phys. Rev. Lett. 121, 165301 (2018).
${ }^{2}$ R. Schmidt and M. Lemeshko, Phys. Rev. Lett. 114, 203001 (2015).
${ }^{3}$ R. Schmidt and M. Lemeshko, Phys. Rev. X 6, 011012 (2016).

Conclusions

- A numerically-exact approach to quantum many-body systems involving coupled angular momenta.
- Works in continuous time and in the thermodynamic limit: no finite-size effects or systematic errors.
- Future: more realistic systems. Real-time dynamics.

Thank you for your attention.

FШF
Der Wissenschaftsfonds.

This work was supported by a Lise Meitner Fellowship of the Austrian Science Fund (FWF), project Nr. M2461-N27.

Backup slide \# 1

Free rotor propagator

$$
G_{0, \lambda}(E)=\frac{1}{E-B \lambda(\lambda+1)+\mathrm{i} \delta}
$$

Interaction propagator

$$
\chi_{\lambda}(E)=\sum_{k} \frac{\left|U_{\lambda}(k)\right|^{2}}{E-\omega_{k}+\mathrm{i} \delta}
$$

Backup slide \# 2

Backup slide \# 3

[^0]: ${ }^{1}$ N. V. Prokof'ev and B. V. Svistunov, Phys. Rev. Lett. 81, 2514 (1998).
 ${ }^{2}$ GB, T.V. Tscherbul, M. Lemeshko, Phys. Rev. Lett. 121, 165301 (2018).

