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Summary

• �e BCS-BEC crossover in ultracold Fermi gases
� �e theoretical treatment: mean-�eld and �uctuations
� �e two-dimensional Fermi gas

• Equation of state
• First sound
• BKT critical temperature

� Beliaev decay of collective excitations

• Superconductivity in high-Tc cuprates: a gauge approach
� Super�uid density
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Ultracold Fermi gases

• Ultracold gases: experimental
observation of quantum
properties of ma�er. Vortices in
a super�uid, BEC.

• Bose-Einstein condensation
(1995), degenerate Fermi gas and
fermionic condensate (2003).

• Very clean experimental
environment: control over the
temperature, the number of
particles, the interaction.
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�e BCS-BEC crossover

In 2004 the BCS-BEC crossover has been observed with ultracold gases made
of fermionic 40K and 6Li alkali-metal atoms. �e fermion-fermion a�ractive
interaction can be tuned (using a Feshbach resonance), from weakly to
strongly interacting.

BCS regime: weakly interacting
Cooper pairs.

BEC regime: tightly bound bosonic
molecules.
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Path integral description of a Fermi gas (1/4)

�e partition function Z of a uniform system at temperature T , in a
d-dimensional volume Ld , and with chemical potential µ reads

Z =

Z
D �D ̄�e�S[ �, ̄� ]

Fermions are described by anticommuting Grassmann �elds,  �(x, ⌧) and the
imaginary time goes from 0 to ~�, where � = 1

kBT
. Action:

S = Sfree + Sint

• Action for a free particle:

Sfree[ �,  ̄�] =

Z ~�

0
d⌧

Z
ddx

X

�

 ̄(x, ⌧)


~ @
@⌧

� ~2
2m

r2 � µ

�
 (x, ⌧)
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Path integral description of a Fermi gas (1/4)

�e partition function Z of a uniform system at temperature T , in a
d-dimensional volume Ld , and with chemical potential µ reads

Z =

Z
D �D ̄�e�S[ �, ̄� ]

Fermions are described by anticommuting Grassmann �elds,  �(x, ⌧) and the
imaginary time goes from 0 to ~�, where � = 1

kBT
. Action:

S = Sfree + Sint

• Interaction term:

Sint[ �,  ̄�] =

Z ~�

0
d⌧

Z
ddxddy  ̄"(x, ⌧) ̄#(y, ⌧)V (x�y) #(y, ⌧) "(x, ⌧)

For a dilute gas one can use V (x � y) = g0�(x � y), where g0 < 0 is the
a�ractive strength of the s-wave coupling.
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Path integral description of a Fermi gas (2/4)

How to treat the quartic interaction term ⇠  4?
• We use a Hubbard-Stratonovich transformation, introducing the auxiliary
�eld �(x) and the shorthand x = (x, ⌧).

• �e interaction between fermions is described in terms of an exchange
boson.

Remarks:
• Essentially a Gaussian integral.
• Physical meaning of the transformation: � ⇠   , as in the BCS theory a
�nite expectation value signals pairing.

• Result: the quartic interaction is decoupled, but we have introduced a new
�eld, hopefully we can treat in perturbatively.
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Path integral description of a Fermi gas (3/4)

A�er the H/S transformation the partition function can be recast in an elegant
way using the Nambu-Gor’kov spinors ( (x) =

�
 "(x)  ̄#(x)

�T )

Z =

Z
D�D�̄D �D ̄� exp

"Z
dx ( ̄(x)

⇥�G�1⇤
x  (x) � |�(x)|2

g0
)

#

�e integration over the fermionic �elds  � ,  ̄� can now be carried out
exactly, being the action quadratic form in the fermionic �elds, yielding:

Z =

Z
D�D�̄ exp

"
Tr ln

��G�1� +

Z
dx

|�|2
g0

#

�e complete physics of the system is encoded in the Green’s function G.

⇥�G�1⇤
x =

✓
~@⌧ + ⇠ ��(x)
��̄(x) ~@⌧ � ⇠

◆

with ⇠ = �~2r2

2m � µ.
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Path integral description of a Fermi gas (4/4)

How to tackle the problem? Idea: separate a leading (and analytically
treatable) contribution from a small contribution (to be treated
perturbatively).
We expand the pairing �eld � around a constant and uniform saddle-point
(mean-�eld) con�guration �0, as

�(x) = �0 + ⌘(x)

it follows that

✓
~@⌧ + ⇠ ��(x)
��̄(x) ~@⌧ � ⇠

◆

| {z }
[�G�1]x

=

✓
~@⌧ + ⇠ ��0
��̄0 ~@⌧ � ⇠

◆

| {z }
h
�G�1

sp

i

x

+

✓
0 �⌘(x)

�⌘̄(x) 0

◆

| {z }
[F]x
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Mean �eld and �uctuations (1/2)

Expanding the �uctuations up to Gaussian order, similarly we get a mean-�eld
and a Gaussian-level partition function:

Z ⇡
Z

D�D�̄eTr ln(�G�1) =

Z
D�D�̄eTr ln(�G�1

sp )eTr ln(1�GspF) = Zmf Z�

with:

Zmf = det
��G�1

sp
� Z� =

Z
D⌘D⌘̄ e� 1

2 Tr(GspFGspF)+
R
dx |⌘|2

g0
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Mean �eld and �uctuations (2/2)

Using Z = e��⌦, where ⌦ is the thermodynamic grand potential, one gets the
mean-�eld equation of state:

⌦mf(µ) = det
��G�1

sp
�

�e Gaussian-level contribution to the grand potential (Q = (q, i⌦n) and ⌦n
are Bose Matsubara frequencies.):

⌦�(µ,�0) =
1
2�

X

Q

ln det(M(Q))
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Single particle and collective excitations

One �nds that in the gas of paired fermions there are two kinds of elementary
excitations: fermionic single-particle excitations with energy

Esp(k) =

s✓
~2k2
2m

� µ

◆2

+�2
0 ,

where �0 is the pairing gap, and bosonic collective excitations with energy

Ecol(q) =

s
~2q2
2m

✓
�
~2q2
2m

+ 2mc2s

◆
,

where � is the �rst correction to the familiar low-momentum phonon
dispersion Ecol(q) ' cs~q and cs is the sound velocity.
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�e two-dimensional BCS-BEC
crossover
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�e BCS-BEC crossover in 2D (1/2)

An additional laser con�nement can be
used to create a quasi-2D pancake
geometry, trapping the fermions in the
antinodes of a standing optical wave.

Bose Strong
Interaction

Fermi

a2
√

n2

P2

P2 ideal
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0.7

0.8

0.9

1

In 2014 the 2D BCS-BEC crossover has
been observed1 with a quasi-2D Fermi
gas of 6Li atoms with widely tunable
s-wave interaction. �e pressure P
versus the gas parameter aBn1/2 has
been measured.

1V. Makhalov, K. Martiyanov, and A. Turlapov, PRL 112, 045301 (2014).
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�e BCS-BEC crossover in 2D (2/2)

Why is the 2D case interesting from the theory point of view?

• �alitatively new physics: a bound state is always present.
• �e �uctuations are more relevant for lower dimensionalities. �e mean
�eld theory can correctly describe (to some extent) the crossover in 3D, we
expect it not to work at all in 2D.

• Berezinskii-Kosterlitz-�ouless mechanism:
� Mermin-Wagner-Hohenberg theorem: no condensation at �nite temperature,

no o�-diagonal long-range order.
� Algebraic decay of correlation functions hexp(i✓(r)) exp(i✓(0))i ⇠ |r|�⌘

� Transition to the normal state at a �nite temperature TBKT .
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�e role of Gaussian �uctuations and collective
excitations: composite bosons

In the strongly interacting limit an a�ractive Fermi
gas maps to a gas of composite bosons with
chemical potential µB = 2(µ + ✏B/2) and mass
mB = 2m. Residual interaction between bosons.

�e present theory extends the BCS theory to the
strong-coupling regime. One may ask: is the strong
coupling limit correctly recovered at mean-�eld?
And at a Gaussian level?
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�eory vs. experiments
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Equation of state

�e pressure measured as a function of the adimensional gas parameter
aB

p
nB. Experimental data, as shown in the introduction (red curve: smooth

approximation of pure 2D Monte Carlo simulation) vs. the present model
(gray dashed curve: mean-�eld, black curve: with �uctuations)
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See also: L. He et al., Phys. Rev. A 92, 023620 (2015).
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First sound velocity (1/2)

�e �rst sound velocity cs can be read from the collective excitations spectrum:

Ecol(q) =

s
~2q2
2m

✓
�
~2q2
2m

+ 2mcs2
◆

' cs~q

�e T = 0 sound velocity is calculated through the thermodynamics formula:

cs =

r
n
m
@µ

@n
We compare our result with:
• �e mean-�eld result, neglecting Gaussian �uctuations.
• �e composite boson limit, obtained through Popov’s equation of state for
2D interacting bosons

c2s =
4⇡~2
m2

B

nB
ln

⇣
1

nBa2B

⌘

• Preliminary experimental data (University of Hamburg).
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First sound velocity (2/2)

• Away from the weak-coupling
limit, in the intermediate region
and in the BEC limit the sound
velocity cs is strongly a�ected by
the Gaussian contribution to the
equation of state.

• Strong coupling: composite boson
limit.

• �ite good agreement with
(preliminary) experimental data.

• �e temperature dependence
(inset) is very weak.
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BKT critical temperature (1/4)

�e Berezinskii-Kosterlitz-�ouless (BKT) transition separated the
low-temperature phase characterized by bound vortex-antivortex pairs from
the high-temperature phase characterized by a proliferation of free vortices.
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�e Berezinskii-Kosterlitz-�ouless (BKT) transition separated the
low-temperature phase characterized by bound vortex-antivortex pairs from
the high-temperature phase characterized by a proliferation of free vortices.

�e BKT critical temperature is found using the Kosterlitz-Nelson (KN)
condition:

kBTBKT =
~2⇡
8m

ns(TBKT )

�e super�uid density is obtained using Landau’s quasiparticle excitations
formula for fermionic and bosonic excitations:

nn,f = �

Z
d2k

(2⇡)2
k2

e�Ek

(e�Ek + 1)2
and nn,b =

�

2

Z
d2q

(2⇡)2
q2

e�Ecol(q)

(e�Ecol(q) � 1)2
,

then ns = n � nn,f � nn,b.
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BKT critical temperature (2/4)

Main approximation

�e single-particle and collective contributions are not independent, as
there is hybridization due to Landau damping at �nite temperature.

�e e�ect of hybridization is most prominent at T ⇠ ✏F , here in the
super�uid phase, below TBKT , one has kBT . 0.125✏F and the hybridiza-
tion can be safely ignored.

Previous results a posteriori con�rm that hybridization should be ne-
glectable.
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BKT critical temperature (3/4)

We can compare the theory with recently obtained experimental data1:

• �e agreement with experimental
data is very good in the
intermediate and strongly coupled
regimes.

• �e agreement for two points in
the weakly-coupled regime is not
as good, but still within 1.2�.

• However, under very general
assumptions, TBKT . 0.125✏F if the
Kosterlitz-Nelson condition holds.

1P. A. Murthy et al., Phys. Rev. Le�. 115, 010401 (2015).
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Beliaev damping of collective modes
in atomic Fermi super�uids
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Beliaev decay: an improved treatment (1/5)

• Beliaev damping in a super�uid is the decay
of a collective excitation into two
lower-frequency collective excitations.

• �e only decay mode for a bosonic
collective excitation in the low momentum,
T = 0 limit.

• Idea: develop the theory for a bosonic system, and the apply it to the case
of collective excitations in a Fermi super�uid.

• We extend the original, “linear” treatment due to Landau allowing for a
realistic spectrum for collective excitations.

Main reference: G. Bighin, L. Salasnich, P.A. Marche�i and F. Toigo, Phys.
Rev. A 92, 023638 (2015).
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Beliaev decay: an improved treatment (2/5)

�e starting point is Landau’s hydrodynamic theory of a super�uid. Initially
introduced on semi-phenomenological grounds, was then rigorously rederived
from the microscopical theory by Popov.

Ĥ =

Z
d3x


1
2
v̂ · ⇢̂v̂ + ⇢̂e(⇢̂)

�

where e is the internal energy per unit mass, v̂ = r�̂ and ⇢̂ = ⇢+ ⇢̂0 �e new
operators can be wri�en expanding in plane waves:

⇢̂0 =
1

p
2V

X

|k| 6=0

Ak
⇣
b̂keik·r + b̂†

ke
�ik·r

⌘
�̂ =

1
p
2V

X

|k| 6=0

i~Bk
⇣
bkeik·r � b†

ke
�ik·r

⌘

and we impose that ⇢̂0 and �̂ should be canonically conjugate variables

[�̂(r), ⇢̂0(r0)] = �i~�(r � r0)
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Beliaev decay: an improved treatment (3/5)

Landau’s treatment

Internal energy

e(⇢̂) =
u2⇢̂2

2⇢

By diagonalizing the Hamiltonian one
gets the linear spectrum

!k = u~k

Kinematic constraints imply that the
Beliaev decay �nal states must be
collinear to the initial state.

Present work

Internal energy

e(⇢̂, r⇢̂) = e(⇢̂)+�
~2

8m2
(r⇢̂)2

⇢̂2

By diagonalizing the Hamiltonian one
gets the Bogoliubov-like spectrum

!k = u~k

s

1 + �
~2
4m2

k2

u2

�e decay angle is determined by �. For
� = 0 the original “linear” theory is re-
covered.
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Beliaev decay: an improved treatment (4/5)

�e Hamiltonian has terms with any number of �eld operators, the relevant,
third-order part is:

Ĥ (3) =

Z
d3r

h
(r�̂)

⇢̂0

2
(r�̂) +

1
6

✓
d
d⇢

u2

⇢

◆
⇢̂03 � �

~2
8m2 (r⇢̂0)2

⇢̂0

⇢2

i

and the Beliaev decay rate is calculated by taking the matrix element

H (3)
if = hi|H (3)|f i

between the following initial and �nal states

|ii = b̂†
p|⌦i |f i = b̂†

q1
b̂†
q2

|⌦i
and �nally using Fermi’s golden rule

dw =
2⇡
~ |Hif |2�(Ef � Ei)

V 2

(2⇡~)6 d
3q1d3q2
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Beliaev decay: an improved treatment (5/5)

Using Landau’s linear spectrum one gets the following decay rate:

w = p5
3

320⇡⇢~4

✓
1 +

⇢2

3u2
d
d⇢

u2

⇢

◆2

Including the gradient term in the internal energy e and taking into account
the full Bogoliubov-like spectrum, one gets

w =
9

32⇡⇢~4

Z p

0
q2|p2 + q2 � 2pq|2 cos ✓0

⇣
1 + � ⇢

u2
d
d⇢

u2
⇢

⌘2

|f 0(cos ✓0, p, q)| dq

where f (cos ✓, p, q) = 1
u

|p�q|
pq

�
!p � !q � !|p�q|

�
, ✓0 = ✓0(p, q) is the only

zero of f , ��1 = (p � q)/ |p � q| (1 + cos(✓0)) + cos(✓0).
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Beliaev damping of collective modes in atomic Fermi
super�uids (1/4)

We can apply the theory to the collective excitations in a Fermi gas, which are
described by the following Bogoliubov-like spectrum

Ecol(q) =

s
~2q2
2m

✓
�
~2q2
2m

+ 2mcs2
◆

' cs~q

exactly mapping on the bosonic spectrum we obtained from the quantum
hydrodynamics.
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Beliaev damping of collective modes in atomic Fermi
super�uids (2/4)

�e Beliaev decay is allowed only if the spectrum grows more than linearly,
for the collective excitations in the BCS-BEC crossover this means that
y = (kFas)�1 & �0.14.

• We calculate the Beliaev decay rate in
the BEC side of the BCS-BEC crossover
(y = (kFas)�1 & 0) and study the ratio
between the present result and Landau’s
linear theory.

• �e corrections to the decay rate when
introducing a non-linear, realistic
spectrum can be quite relevant, up to
40% w.r.t. Landau’s result.
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Beliaev damping of collective modes in atomic Fermi
super�uids (3/4)

Collective modes spectra for y = 0.0, y = 0.5, y = 1.0. Black line: real part.
Green line: ± imaginary part. Red line: dissociation threshold, the bosonic
excitation breaks into two fermionic excitations.

By matching the real and imaginary parts of the spectrum we identify a cuto�
scale a�er which the collective excitation is no longer well de�ned due to
Beliaev decay.
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Beliaev damping of collective modes in atomic Fermi
super�uids (4/4)

Pair �uctuations spectral function

A⌘⌘(k,!) = �2 ImG⌘⌘(k,! + �k)

where G is the Green function, i.e. the inverse of M seen before, �k is the
imaginary part of the spectrum due to Beliaev decay.

225

25

100

0

400

• Most of the spectral weight is
concentrated for p . kF .

• Well before hi�ing the
dissociation threshold the
excitation is no longer well
de�ned due to the high decay
rate.
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High-Tc superconductivity in cuprates

Main references: P. A. Marche�i, F. Ye, Z. B. Su, and L. Yu Phys. Rev. B 84, 214525 (2011) (for the
theoretical framework), P.A. Marche�i and GB, Europhys. Le�. 110, 37001 (2015) (for the
super�uid density).
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Cuprates: an overview (1/2)

• Superconducting cuprates: a class of
superconducting materials with very high
critical temperatures (up to 135 �K),
characterized by CuO2 planes.

• Discovered in 1986 by J. G. Bednorz e K. A.
Müller; Nobel prize awarded in 1987, the
fastest in history.

• Very active research �eld: more than
100,000 research articles in ⇠ 25 years.

• To date the microscopical mechanism
behind SC in cuprates has not yet been
completely understood.

Figure: Unitary cell for
La2CuO4.
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Cuprates: an overview (2/2)

• Di�erent chemical compositions
(YBCO, LSCO, BSSCO) the only
common chemical features being the
CuO2 planes.

• As a consequence the CuO2 planes
are believed to be the main seat of
superconductivity.

• �e onset of superconductivity is controlled by the doping (additional holes
injected into the CuO2 planes) and by temperature. Universal phase
diagram.

• BCS theory can not account for SC in cuprates.
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From the CuO2 planes to the t � J model

CuO2 planes in terms of Zhang-Rice singlets:

ZR: Doping-induced hole reside
(primarily) on combinations of four
oxygen p orbitals centered around a
copper site. Antiferromagnetic
background.

From ZR singlets to the t � J model:
• Strong on-site repulsion (Gutzwiller projector PG)
• Nearest neighbour hopping (t ⇡ 0.3 eV)
• Antiferromagnetic Heisenberg term (J ⇡ 0.1 eV)

Ht�J =
X

hi,ji

PG

"
�t

X

↵

c†
i↵cj↵ + h.c. + JSi · Sj

#
PG

“Doping a Mo� insulator”, P.A. Lee, N. Nagaosa, X.-G. Wen, Rev. Mod. Phys. 78, 17 (2006)
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Spin-charge separation

�e electron creation/annihilation operators are decomposed as follows:

ĉi,↵ = ŝi,↵ĥ†
i

where:
• ĥi is a spinless fermion (holon): the PG constraint is automatically
satis�ed due to Pauli exclusion principle.

• ŝi,↵ is a spin 1/2 boson (spinon).

A local invariance introduced:

U (1)h/s

(
ŝi,↵ �! ŝi,↵ei�(x)

ĥi �! ĥiei�(x)

Emergent U (1) gauge �eld: Aµ ⇡ s⇤↵@µs↵ + · · ·
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Holons, spinons and statistical �uxes (1/2)

In two dimensions one can bind a statistical �ux � to holons and spinons,
modifying the statistics:

cj↵ = e�i�h(j)h⇤
j

⇣
ei�s(j)sj

⌘

↵

Example: Jordan-Wigner transformation 1D

Analogously in 1D
c†
j �! a†

j e
�i⇡

P
l<j a

†
l al

where c† is a fermionic operator, a† is a bosonic one and the additional
phase restores the correct statistics.
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Holons, spinons and statistical �uxes (1/2)

In two dimensions one can bind a statistical �ux � to holons and spinons,
modifying the statistics:

cj↵ = e�i�h(j)h⇤
j

⇣
ei�s(j)sj

⌘

↵

In 2D we extend the idea behind Chern-Simons bosonization: just like
in the 1D case one can bind a “string” to an excitation modifying the
statistics.
However in 2D an additional gauge �eld needs to be minimally cou-
pled and an additional “kinetic” term for the gauge �eld is also needed.
�e coe�cient of this kinetic term regulates the statistics of the excita-
tion+�ux combination.
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Holons, spinons and statistical �uxes (2/2)

�is new representation of the t � J model in terms of holons, spinons and
statistical �uxes is completely equivalent to our starting point. One can tune
the statistics of holons and spinons as long as the recomposed hole is still a
fermion. We choose the operator+�ux combination to be a semion, i.e.
acquiring a ±i factor upon exchange: why do we divide the electron degrees
of freedom in this way?
• �e charge and spin degrees of freedom can be decomposed in many
di�erent ways (e.g. slave boson/slave fermion as particular cases), however
the MF results are very di�erent.

• In 1D case a semionic theory reproduces the correct critical exponents.

Anomalous (semionic) statistics possible because the system is 2D (like the
FQHE).
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E�ective action

Mean-�eld approximation: neglect the holon �uctuations in �h and the
spinon �uctuations in �s .

E�ective action for the model:
• Holons are (formally) relativistic Dirac fermions.
• Spinons are described by a non-linear massive � model, with m ⇠ |� ln �|.
• �e gauge �eld Aµ is minimally coupled to holons and spinons: it
corresponds to the h/s symmetry: it provides a “gauge glue” between the
two components of the electron.

Final result: we have an e�ective description of the t � J model in terms of
holons and spinons.
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Towards superconductivity

�e electron has a composite
structure:
spinon + holon  

Superconductivity is
achieved in three stages:
• Holon pairing
• Spinon pairing
• Phase coherence
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�e pairing process

Figure: �e a�ractive potential between the
spinons, essential for the SC, is mediated by a
gauge �eld “binding” holon and spinons, and
by the holon a�raction.

�e superconductivity is achieved in
three steps: holon pairing (Tph),
spinon pairing (Tps), phase
coherence (Tc):

�c ⇠ |�s|
|�h| e

i(

⌘�z }| {
�s � �h)

SC () h�ci 6= 0

�e direct spinon-spinon interaction
is repulsive, the gauge �uctuations
play a key role.
�e phase dynamics are described by
a gauged XY model, so that the SC
transition is essentially XY .
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Phase diagram

Tph (yellow line) is the holon pairing
temperature. Tps (red line) is is the spinon
pairing temperature and encloses the N region in
which the system supports a Nernst signal. �e
crossover PG-SM is denoted by the dashed line.
Tc (green line) is determined from the transition
temperature of the XY model of spinons. �e
Nèel temperature (dot-dashed line), delimiting
the region characterized by anti-ferromagnetic
(AF) order, is qualitative from experiments.
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Phase diagram

From Y. Wang, L. Li, N.P. Ong, Phys.
Rev. B 73, 024510 (2006).
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Super�uid density

�e super�uid density ⇢s is one of the main signatures of the superconducting
transition.
• It can be de�ned as the coe�cient governing phase �uctuations in an
e�ective action for superconductivity:

Se� =
⇢s
2

Z
d⌧ddr (r✓)2 + · · ·

• It is simply related to the Meissner e�ect and to the London penetration
depth:

� =

r
m

µ0⇢se2
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Super�uid density in cuprates
A great deal of data is available for super�uid density in cuprates. �e peculiar
behaviour of ⇢s is very di�erent from that of conventional materials, and it
represents a longstanding puzzle.306 Cuprate superconductivity

T / Tc
1

1

! s
(T

)/
! s

(0
)

Fig. 7.9 The form of the relative superfluid density as a function of temperature for a BCS
superconductor (pecked line) and for a typical cuprate (solid line) (qualitative).

same level of doping. Recall that ��2
ab measures the 3D superfluid density; thus if the

hypothesis of universality is correct, one would expect the relation

�2
ab(0)

d̄
= const. (7.6.1)

to hold, where d̄ is the average distance between CuO2 planes. While the microwave
data alone are hardly su�cient to test this hypothesis, we can try to compare the
values inferred from µSR (Uemura et al. 1989); ratios may be hoped to be given by
this technique more reliably than absolute values. The data of Uemura et al. (op. cit.)
appear compatible with the hypothesis as regards the higher-Tc materials, i.e. the ratio
is the same22 within the error bars for optimally doped T l-2223 and (near)-optimally
doped YBCO, and if we take the a-axis value for the latter from the microwave data
the constant comes out to be near 5⇥ 105 Å. For LSCO the number is quite di�erent,
about a factor of 2 larger.

The data of Uemura et al. were actually presented as evidence of an intriguing cor-
relation between ��2

ab (0) and the transition temperature Tc; for doping below optimal
the relationship, for the nine di�erent systems measured, appears to be rather con-
vincingly linear. However, their Fig. 2 also shows that the increase of ��2

ab (0) with
doping persists beyond the maximum in Tc.

One may ask how well the data fit a näıve picture, in which the superfluid density
per plane is simply expressed as ne2µ0/m⇤, where n is the number of carriers per unit
area and m⇤ (⇠4 m) the e�ective mass inferred from the specific heat measurements,
so that the quantity ��2

ab (0) is n3De2µ0/m⇤. For optimally doped YBCO, n3D
⇠= pe� ⇥

1.1 ⇥ 1022 cm�3, where pe� is the e�ective number of carriers per CuO2 unit (see
below), and the quantity ��2

ab (0) is therefore approximately 1.5pe�(m/m⇤) 10�6 Å�2.

22Actually, the values of d̄ and ��2
ab (0) separately are closely similar for the two materials, but this

is not particularly significant since the multilayering structure is di�erent.

It exhibits a combination of features
that do not allow for a simple
explanation (within BCS-like or
XY-like models). In the �gure:
cuprates (solid) vs. s-wave BCS
(dashed line).

Well-de�ned gapped ⇢s (near T = 0) Critical Uemura relation
Fermi arcs (ARPES) is linear in T exponent 2

3 ⇢s(T = 0) / Tc

BCS 3 3 7 (would be 1) 7
3DXY 7 3 (but slope?) 3 ? (it depends…)
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Experimental review
A review of experimental data in moderately underdoped and optimally doped
cuprates: critical exponent 2/3 and universality in renormalized super�uid
density.
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Experimental review

A review of experimental data in moderately underdoped and optimally doped
cuprates: critical exponent 2/3 and universality in renormalized super�uid
density.

Canwe interpret these experimental data within the present formalism?
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A gauge approach to super�uid density (1/2)

In the pseudogap (PG) regime, according to the present model:
• �e holon contribution is a “standard” BCS-like d-wave super�uid density.

⇢s,h(T) =
2✏F
⇡

✓
1 � log(2)

2�h
T
◆

• �e contribution from spinons is that of a 3DXY model (⇢XY ), with e�ective
temperature ⇥ = 3⇡(ms ��2

s/ms)/�2
s .

⇢s,s(T) = ⇠


d⇥
dT

(0)
��1

⇢XY (⇥(T)/⇥(Tc))

• �e super�uid densities sum according the Io�e-Larkin rule, due to the
gauge string between holons and spinons. (in PG
⇢s,s ⌧ ⇢s,h =) ⇢s ⇡ ⇢s,s)

⇢s =
⇢s,s⇢s,h
⇢s,s + ⇢s,h
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A gauge approach to super�uid density (1/2)

Our solution to the puzzle…

• �e critical properties near Tc are determined by the spinons,
whose dynamics is 3DXY-like (! 2/3 critical exponent)

• �e Fermi surface, on the other hand, is determined by the holon
BCS-like part of the theory (! possibility of Fermi arcs).

• Finally the super�uid density in the moderate underdoping regime
is dominated by the spinon contribution (! 3DXY behaviour of
normalized ⇢s(T/Tc) and Uemura relation).
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Comparison with experimental data (1/2)

�e model can accurately �t normalized super�uid density data from
moderate underdopings to optimal doping with only one O(1) free parameter,
regulating the relative weight of holons and spinons.

Figure: �e normalized super�uid
density vs. T

Tc
. Our theoretical

calculation (solid line, � = 0.12) is
compared with a pure 3D XY
model (dashed line), squares
corresponding to the
near-universal YBCO behavior for
super�uid density, circles for
� = 0.075 LSCO, triangles for
near-optimal-doping BSCCO.�e
near-universal behavior of our ⇢s
is shown in the inset.
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Comparison with experimental data (1/2)

• �e experimentally observed critical behavior is exactly reproduced:

⇢s ⇠
����
T � Tc
Tc

����

2
3

for T �! Tc

• �e doping-quasi-universality is also a feature of the model.

Figure: �e normalized super�uid
density vs. T

Tc
. Our theoretical

calculation (solid line, � = 0.12) is
compared with a pure 3D XY
model (dashed line), squares
corresponding to the
near-universal YBCO behavior for
super�uid density, circles for
� = 0.075 LSCO, triangles for
near-optimal-doping BSCCO.�e
near-universal behavior of our ⇢s
is shown in the inset.
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Comparison with experimental data (2/3)

Uemura relation in underdoped cuprates ⇢s(T = 0) / Tc , derived in an
(approximate) analytical form.

Figure: Uemura et al. (Phys. Rev.
Le�. 62, 2317 (1989)) observed
strong linearity between
⇢s(T = 0) and Tc in underdoped
cuprates (0  �  0.15).
�eoretically calculated T = 0
super�uid density (solid line,
arbitrary units) and critical
temperature (dashed line) vs. �
exhibits an approximate Uemura.
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�ree universality classes
�ree “universality classes” in (normalized) super�uid density in cuprates: PG,
SM, FL?
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Conclusions

• �e theoretical treatment of a 2D Fermi gas needs the inclusion of
Gaussian �uctuations.

• �e equation of state, the �rst sound velocity, the BKT critical temperature
calculated within this formalism show good agreement with experimental
data.

• �e Beliaev decay is the only decay mode at T = 0 for collective excitation
in an ultracold Fermi gas; it has been studied for the collective modes of the
BCS-BEC crossover.

• A gauge approach to cuprates correctly �ts experimental data from
moderately underdoped to optimally doped samples, reproducing the
correct critical exponent and the Uemura relation.
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